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One way of examining forecasting methods via assignments is to give each student a real or 
simulated set of data, with a requirement to forecast future values. However checking the 
accuracy of calculations for the host of possible methods can be onerous. One solution is to make 
part or the entire assessment dependent on the accuracy of the forecasts obtained. This mirrors 
real life, where forecasts are judged not by the method used but by how accurate the predictions 
turn out. This paper investigates how this might work with an actual example. Using simulated 
data from a model which incorporates trend, seasonality, Easter effect and randomness, we use a 
function of the mean square error of the forecasts to determine the final mark for a variety of 
methods. Results indicate that the students who have put in more work, and/or fitted the better 
models, would obtain the better marks. 
 
INTRODUCTION 

Before its course was abandoned, the Mathematics Department at Swinburne University 
put much effort into making graduates of its Mathematics and Computer Science course 
employable. The practical nature of the course was ensured by the use of a graduated set of 
project experiences - simple problems, individual and group workshops, extended case studies, 
group projects using staff as clients, a full year of Industry Based Learning (full time paid 
relevant employment), and group projects for an industrial client. Bailey and Weal (1993) give a 
good account of the structure of the first year of the course while Weal (1991) gives an overview 
of the practical components used during the entire course.  

Clarke and Weal (1995) describe the use of workshops in the course. A Workshop refers 
to a small assignment involving the solution of an unstructured or semi-structured problem. They 
were used in the first year to wean students off the artificial problems usually used when teaching 
techniques, as well as to introduce them to the messier and less structured problems they are 
likely to meet in real life. In the first year of the course there were three workshops, each worth 
only four marks. One of the first workshops was basically a discriminant analysis problem 
(although we never referred to it as such to the students, who only had an elementary statistics 
background at this stage). The data consisted of the results of three different medical 
measurements on about 20 patients with a certain medical condition, along with similar data for 
another 20 patients with an alternative condition. The data on a further eight patients whose 
condition was unknown was given, and the students were asked to allocate each of these patients 
to the most likely condition. As the workshops were worth so little, it was inefficient to spend a 
lot of time in marking – our major purpose was to get students thinking about a different sort of 
problem. We solved this by simply giving half a mark to each correctly allocated patient.  

This idea could be applied in a range of learning situations, but it appears particularly 
well suited to forecasting. One way of examining forecasting methods via assignments is to give 
each student a real set of data, with a requirement to forecast future values. The task is more 
realistic if students are given little direction as to method. They then have to decide whether to 
use naive methods, linear or non linear regression, or one of many exponential smoothing 
methods to account for possible trend or seasonality or other effect. However this can make 
marking onerous. Even if students are given the same set of data, checking the accuracy of 
calculations for the host of possible methods can be at best tedious or at worst impossible. One 
solution is to make part or the entire assessment dependant on the accuracy of the forecasts 
obtained. This mirrors real life, where forecasts are judged not by the method used but by how 
accurate the predictions turn out. The author has used this in a very simple example whereby 
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students had to forecast future daily maximum temperatures. An alternative is to use data 
simulated from a known model which incorporates effects which students have studied, such as 
trend, seasonality and randomness. We investigate this approach in this paper.  

 
THE DATA 

The model given in Equation 1 is used within Excel to generate five years of fictitious 
monthly sales figures for a product with extra sales in the southern summer and at Easter.  

Sales = 100*trend*monthly index*Easter index*random effect. (1) 
Further randomness can be introduced by making any of these parameters random variables 
rather than constants. Here we make the monthly trend equal to an annual rate of increase of 10%, 
11%, 12%, 13% or 14% with equal probability, and choose the other parameters as constants. 
Monthly indices of 1.17, 1.10, 1.00, 0.91, 0.85, 0.83, 0.85, 0.91, 1.00, 1.10, 1.17, 1.20 were used. 
Sales are increased by 15% if the month contains Easter (March in 2002, 2005, April in 2001, 
2003, 2004, 2006). Finally the random effect is chosen as a uniform distributed fraction between 
85% and 115%. Figure 1 gives a single example of the infinite number of data sets that can be 
generated by the model. It shows monthly sales for the period 2001 to 2005.  

Clearly with careful setting up of the spreadsheet, parameters such as the average annual 
rate of increase, the maximum monthly seasonal index, the Easter index and the range or 
distribution of the random effect can easily be changed to produce a large number of different 
series. This allows for students to receive data sets with different structure or parameter values.  

Here we assume all students receive the same data set, and are asked to forecast the next 
12 months sales. We investigate the ramifications of marking on the closeness of the student’s 
forecasts to the values given by the model. In generating the extra sales to be forecast, some of 
the randomness can be removed to make the forecasting task easier for students. For example all 
the randomness could be removed and the expected values generated by the model used. Here we 
don’t go this far, and remove the variation in the annual trend, but leave the error term. Figure 1 
also shows the model’s sales, with this alteration, for each month in 2006, and these are also 
given in the first two columns of Table 1.  
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Figure 1: Simulated Sales data  
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ANALYSIS 

The results of several techniques which students may try are shown in Table 1, ranging 
from simple naïve forecasts to more sophisticated techniques. The table shows the root mean 
square of the errors (RMSE) for the 60 fitted values, along with the 12 forecast values and their 
RMSE. The description of each method follows. This is not a comprehensive list of possible 
methods, merely a selection that students may try. We are interested in how the sophistication of 
the method is reflected in the closeness of the predicted and forecast values to their actual values.  

 
Table 1 
Forecasts and RMSE for each month of 2006, and RMSE of Fitted values for 2001-2005  

Period Sales Aver ExpS PrevV OExpS LReg Season Easter AMReg MMReg 
Jan 06 245.8 139.5 172.6 220.8 209.9 183.6 218.2 218.2 204.1 221.7 
Feb 06 215.4 139.5 172.6 220.8 209.9 185.1 196.0 196.0 192.3 200.4 
Mar 06 189.0 139.5 172.6 220.8 209.9 186.5 195.2 195.2 178.3 180.5 
Apr 06 211.0 139.5 172.6 220.8 209.9 187.9 184.5 204.9 197.9 208.0 
May 06 175.9 139.5 172.6 220.8 209.9 189.4 144.6 144.6 155.5 149.7 
Jun 06 163.9 139.5 172.6 220.8 209.9 190.8 161.8 161.8 169.6 167.0 
Jul 06 162.1 139.5 172.6 220.8 209.9 192.3 148.9 148.9 159.7 154.9 
Aug 06 164.4 139.5 172.6 220.8 209.9 193.7 178.8 178.8 180.3 186.4 
Sep 06 175.3 139.5 172.6 220.8 209.9 195.2 183.2 183.2 184.6 191.5 
Oct 06 205.8 139.5 172.6 220.8 209.9 196.6 205.8 205.8 201.6 215.4 
Nov 06 220.6 139.5 172.6 220.8 209.9 198.1 240.7 240.7 226.6 253.3 
Dec 06 278.8 139.5 172.6 220.8 209.9 199.5 243.2 243.2 229.1 256.5 
2006 RMSE 31.4 20.0 17.9 16.1 16.0 9.1 8.5 9.9 8.2 
2001-5 RMSE 34.9 27.5 23.7 23.2 24.4 13.5 12.5 11.0 11.7 
 

The first four methods are naïve methods that take little account of the structure of the 
data. The first uses the overall average (Aver), and because it doesn’t pick up the general trend the 
forecasts are all far too low. The second uses exponential smoothing (ExpS) with a smoothing 
parameter of 0.15. This works up to a higher forecast, but is still 30 lower than the actual average 
of the 2006 sales, and again forecasts badly. Using the previous value (PrevV) as the forecast for 
the next period performs better for the fitted values, presumably because it picks up some of the 
seasonality as well as the trend. However this is lost when forecasting, as again the forecasts 
allow for neither seasonality nor trend. This method would also be highly variable, as clearly the 
forecasts depend on the single value of the last of the known sales. The fourth method avoids this 
last problem to some extent by using optimal exponential smoothing (OExpS) with the smoothing 
parameter (0.8) chosen to minimize the RMSE of the fitted values. This is easily accomplished 
using Solver in Excel. This shows only a slight improvement in the forecasts.  

Any student who graphs the data as in Figure 1 will see the presence of trend and 
hopefully also seasonality. The next method fits a simple linear regression (LReg) to the raw data, 
giving Sales = 95.5 + 1.44 x Observation Number. The fitted RMSE shows no improvement over 
exponential smoothing, and the forecast errors are also about the same. Clearly to make 
reasonable improvement we need to allow for seasonality.  

While there are more complicated methods of calculating seasonal indices, here we 
simply average the ratio of actual sales and the prediction given by the above linear regression for 
each month. This gives estimated monthly indices of 1.19, 1.06, 1.05, 0.98, 0.76, 0.85, 0.77, 0.92, 
0.94, 1.05, 1.22, 1.22. These are all within 9 percentage points of the actual model values. The 
next method (Season) multiplies the linear regression forecasts by these values and gives a large 
reduction in both the fitted and forecast errors.  

Top students may realize that sales might increase at Easter, particularly if the product is 
chosen carefully. Chocolate might be too obvious, and something associated with holidays such 
as duty free sales or demand for holiday accommodation might be more subtle. The difficulty is 
the Easter holiday moves around between March and April, and the next method (Easter) allows 



 
IASE /ISI Satellite, 2007: Clarke                                                                                                                      
 
   
for this. Again taking the average ratio of Sales and the previous seasonal forecast for the 5 
months containing Easter, we get an Easter index of 1.11 (compared with the model value of 
1.15). This makes a slight improvement to the fitted values (as it must) and certainly improves the 
forecast for April 2006.  

Clearly there are alternative and probably better methods of allowing for these effects. 
Comparing sales to 12 month moving average might be a better way to get seasonal indices, and 
this effect could be removed before trend is estimated. Easter and seasonal effects also interact. 
There are also Exponential smoothing methods that allow for trend and seasonality which could 
be tried. All these methods can be easily implemented using Excel.  

Finally, we fit both an additive and multiplicative general linear model with a trend, 
month and Easter effect. While this could be done in Excel, here Proc GLM in SAS Version 9 
was used. In the first case we use the raw sales figures to fit an additive model (AMReg). While 
this gives the best fit, it does not produce as good a forecast as the previous model. This is 
presumably because it fails to pick up the multiplicative nature of the model. While Figure 1 does 
not clearly show an increase in variance, most sales figures would be expected to grow 
exponentially rather than linearly, and it is reasonable to expect a multiplicative model. We fit 
this multiplicative model (MMReg) by using the previous method after taking logs of sales 
figures. This gives the best forecasts with a RMSE of only 8.2. Interestingly these are not all that 
much better than the student who uses some simple statistical theory and common sense.  

Also of interest is the fact that the predicted RMSE is in each case less than the fitted 
RMSE. This is the reverse of the usual, where one would expect the fit to future values to be 
worse than the fit to the values from which the fitted model parameters have been derived. This is 
presumably because we have used the expected values of trend, rather than random ones. This 
reduces the variation by removing the variation due to the random error of the trend. It would be 
possible to use expected values with no error, or fully simulated values for the future sales, 
depending on the level of randomness with which teachers and students feel comfortable. Here 
the middle road was chosen.  

Note also that in general the better the fit, the better the forecast. Thus a student who tries 
different methods and improves the fit, will generally be rewarded with better forecasts. 
 
ASSESSMENT 

The question now addressed is converting the closeness of the obtained solution to a 
mark. One could use a straight percentage of the best RMSE (as defined by that obtained by the 
lecturer, or by the best of the students) over that obtained by the student. This for instance would 
give 100* 8.2/31.4 = 26% for the simple average method, and 100*8.2/16.0 = 51% for the simple 
linear regression method. These marks might be considered too high if students had covered 
seasonality in lectures, but reasonable if the assignment was a preliminary one to introduce 
students to some forecasting concepts. Alternatively one could use the percentage of maximum 
reduction in RMSE. Thus the average gets zero, and the linear regression gets 100*(31.4-16.0) / 
(31.4-8.2) =66%.  

One of the problems with these methods is that the law of diminishing returns means 
students are not rewarded for difficult small improvements once the main effects are accounted 
for. Using sums of squares of the error might go some way to correcting this. A better method is 
to create a table where a certain RSME corresponds to a particular mark, and use interpolation 
between these values. This allows the examiner great flexibility, and allows for a selection with 
easy interpretation of marks. Thus for example the table could be chosen so that a student who 
allows for a trend ( which Table 1 shows should result in a RMSE of about 16) might generally 
obtain a pass (50%).. However to obtain a credit (65%) it would be necessary to allow for 
seasonality (RMSE of 9 from Table 1). This might result in a conversion as shown in Table 2. 
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Table 2 
Possible conversion of RMSE to percentage mark. 

RMSE Mark 
30 20% 
20 40% 
16 50% 

9 65% 
8 100% 

 
Such a system makes marking virtually automatic with the use of a spreadsheet. Students 

submit their fitted values and forecasts electronically on a supplied spreadsheet. These are pasted 
into a master which then calculates the RMSE and mark.  

 
ALTERNATIVE DATASETS 

The question arises as to whether the results achieved here are just due to the particular 
simulated values – can a lecturer be sure that other values will yield the same results. For those 
methods that do not involve the use of Solver, Excel can be used to simulate several trials. This 
eliminates the two multiple regression methods and the OExpS method. Table 3 shows the above 
results along with the results obtained from 10 further simulations of the data. Clearly the order is 
generally maintained. On one occasion the Easter adjustment worsens the result of the Season 
method, and the ExpS method is as likely as not to better the PrevV method. But generally the 
table gives some confidence that the interpolation method above would yield reasonable results 
whatever data set was used.  

However the table suggests that one needs to be careful in using separate data for each 
student. For example the RMSE for a student using PrevV who was lucky enough to get 
simulation 6 data would obtain a RMSE of 13.9, better than the students using LReg who 
received any data sets except Simulation 2, 3, 6 and 9. Such inconsistencies are few however. The 
Aver method never does better than ExpS or PrevV, which in turn never do better than the Season 
method. The inequities that do exist might be minimised by using larger growth percentages, 
Seasonal and Easter indices or smaller random errors. Alternatively using a spreadsheet such as 
that developed for this paper, it is possible to continually generate data sets and select for students 
only those for which the Easter method gave similar RMSEs.  

 
Table 3 
RMSE for different methods using 11 different data sets. 
Simulation Aver ExpS PrevV LReg Season Easter  

Above 31.4 20.0 17.9 16.1 9.1 8.5 
1 31.8 21.7 16.7 17.0 10.3 9.5 
2 27.3 17.4 21.3 12.5 7.1 7.7 
3 28.0 16.4 23.6 13.5 7.6 7.6 
4 35.1 22.7 17.5 18.1 12.7 12.3 
5 30.2 18.7 26.7 14.6 9.6 9.4 
6 29.9 18.1 13.9 11.8 10.3 10.2 
7 29.2 17.7 24.0 15.4 11.0 10.8 
8 34.8 23.2 19.2 18.2 11.5 11.1 
9 28.5 15.9 20.1 13.2 7.0 6.8 

10 34.1 22.2 22.2 18.0 9.9 9.6 
 
FORECAST ERROR 

For more advanced students, an alternative idea is to mark on the degree to which 
students forecasts match their confidence. Any forecast should really be accompanied by an 
estimate of error, or confidence interval. Students are then marked on a function that incorporates 
both their accuracy and their error. An accurate forecast with high confidence receives more 
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reward than an accurate one with low confidence. An inaccurate forecast made with a high degree 
of confidence would receive less than one made with less confidence. Such a method has been 
used to mark AFL football tipping competitions. Many footy tipping competitions require the 
participant to nominate the winning team, others the margin. Dowe (1996) describes a 
probabilistic football tipping competition in which the person nominates the probability of each 
team winning, and the likelihood of the actual result [log(prob of winning team)] is used to 
determine a score. On the same site, the Gaussian competition involves the tipper nominating a 
winning margin and a standard deviation, and the reward is a constant plus the logarithm of the 
probability they assigned to the winning margin (see http://www.csse.monash.edu.au/~footy 
/about.shtml#gauss).  

In our case we might use the probability of the forecast being within 25 of the correct 
sales, assuming the normal distribution of errors with a standard deviation equal to the fitted 
RMSE. This is easily accomplished with the NORMAL functions in Excel. Table 4 shows the 
values obtained for each method for each month along with the total probability. Examination of 
the table clearly shows the strengths and weaknesses of each method. The average does poorly at 
the extremes and better in the middle. As expected, the final three methods all do better with the 
April forecast. Again some scaling of the total probability to produce marks seems feasible. The 
final row shows the Log likelihood – the sum of the logs of the probability. This shows a greater 
range than the sum of the probabilities, and clearly penalizes those forecasts that are way out. 
Thus because of the very poor Jan and Dec forecasts, the AMReg method gets a lower score than 
either the Season and the Easter method,  
 
Table 4 
Probability of actual value being within 25 of forecast.  
 Aver ExpS PrevV OExpS LReg Season Easter AMReg MMReg 
Jan 0.01 0.04 0.48 0.31 0.06 0.42 0.42 0.06 0.53 
Feb 0.07 0.25 0.70 0.71 0.40 0.66 0.67 0.57 0.80 
Mar 0.22 0.56 0.38 0.55 0.69 0.91 0.93 0.90 0.92 
Apr 0.09 0.30 0.67 0.72 0.51 0.46 0.93 0.86 0.96 
May 0.33 0.63 0.20 0.34 0.62 0.32 0.31 0.66 0.46 
Jun 0.43 0.61 0.09 0.18 0.45 0.93 0.95 0.96 0.96 
Jul 0.44 0.60 0.08 0.16 0.40 0.81 0.83 0.97 0.93 
Aug 0.42 0.62 0.09 0.19 0.42 0.78 0.80 0.80 0.60 
Sep 0.34 0.63 0.19 0.33 0.55 0.89 0.91 0.92 0.77 
Oct 0.11 0.37 0.62 0.71 0.66 0.94 0.95 0.97 0.90 
Nov 0.05 0.20 0.71 0.67 0.52 0.64 0.65 0.96 0.26 
Dec 0.00 0.00 0.08 0.03 0.01 0.22 0.20 0.01 0.59 
Total 2.53 4.81 4.28 4.90 5.30 7.97 8.55 8.64 8.69 
LogL -28.6 -17.9 -16.4 -14.1 -13.8 -6.0 -5.2 -8.8 -4.6 
 
CONCLUSION 

To reduce the burden of marking, teachers should consider using the accuracy of 
forecasts as the basis for marking, rather than a detailed examination of the method used. This 
mirrors real life, and is particularly suitable for assignments. The above analysis shows that in 
general increased sophistication of a fitted model produces higher accuracy, that the accuracy of 
the forecasts is highly correlated with the accuracy of the fitted model, and that the rank order of 
forecast accuracy of the different methods is reasonably independent of the data set used. This 
suggests that a marking scheme based on the RMSE of the forecasts is feasible. Such a scheme 
could be extended to include assessing confidence limits on the forecasts. In general this should 
give the students who have put in more work, and/or fitted the better models, the better marks. 
Such an assessment method has the advantage of not only needing little time to mark, but by 
being completely objective. Lecturers nervous about such a scheme could test the waters by 
allocating a portion of the assignment mark to be determined in such a manner.  
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