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ABSTRACT 
Many large scientific and social scientific data sets—for example, those about climate 

and the environment, medicine, population or economic trends, the human genome, astronomy—
are now widely available. As secondary students explore these data they investigate fascinating 
and important topics that can help them better participate as global citizens. However, 
understanding the meaning of these data requires statistical understandings—e.g., of variability 
amidst underlying aggregate trends, statistical control in complex relationships, the meaning of 
interaction effects, expectations about small probability events, statistical versus practical 
significance—that are difficult and rarely taught at the secondary level. This paper explores how 
interest in the science can motivate exploration of statistical ideas, at an informal if not rigorous 
technical level, which in turn can lead to a deeper understanding of scientific ideas. The role of 
data visualization and analysis tools to support this learning is also explored. 

INTRODUCTION 
The number and variety of publicly accessible large scientific and social scientific data 

sets has been growing rapidly in the last several years. Many of these address some of the most 
compelling scientific and social scientific questions—including issues of climate change, 
biocomplexity and species extinction, the search for extra-solar planets or the origins of the 
universe, and the shifting distribution of economic resources. Interest in tapping this increase in 
accessible data for scientific and educational purposes has also been growing. The National 
Science Board (U.S.) in a study entitled Long-lived digital data collections: Enabling research 
and education in the 21st Century (National Science Board, 2005), is almost effusive in 
describing the potential of these widely accessible data sets: 

It is exceedingly rare that fundamentally new approaches to research and education 
arise. Information technology has ushered in such a fundamental change. Digital data 
collections are at the heart of this change. They enable analysis at unprecedented levels of 
accuracy and sophistication and provide novel insights through innovative information 
integration. Through their very size and complexity, such digital collections provide new 
phenomena for study. At the same time, such collections are a powerful force for inclusion, 
removing barriers to participation at all ages and levels of education.  

Much attention has been paid to the technical and infrastructure issues associated with 
making these data available to scientists and the general public—an essential step to ensure wide 
access and use. Less attention has been paid to whether ordinary people and students will have 
the statistical understandings needed to make sense of these data and their implications. This type 
of cognitive access requires learning, at least in an informal way, about important statistical ideas, 
and can be facilitated by easy-to-use tools for representing and exploring relationships in data.  

Unfortunately, study of statistics is still limited, despite calls for increased attention to 
statistics education by associations of math educators in several countries (Australian Education 
Council, 1994; National Council of Teachers of Mathematics (NCTM), 2000; New Zealand 
Ministry of Education, 1992; UK Department for Education and Employment, 1999). Although 
the AP Statistics Exam in the US is one of the fastest growing tests (averaging more than 9000 
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new students a year and now the 10th largest exam), the 108,284 students who took the test in 
2008 (http://www.collegeboard.com/student/testing/ap/statistics/dist.html?stats) still represent 
just 3% of the total number of seniors.2  

Other secondary students’ understanding of statistical ideas may be limited, in part 
because their exposure to statistical concepts is often restricted (at best) to techniques for 
calculating basic descriptive statistics (measures of central tendency and dispersion), techniques 
for creating specific representations of data (histograms, box plots, scatter plots), a few ideas 
about sampling, distributional shape, and study methods, and perhaps exposure to lines of best fit 
and simple hypothesis tests. Given this level of exposure, students have trouble understanding 
how aggregate measures such as the mean or median can really typify a complex and variable 
data set, don’t really understand how variability or sample size contributes to determining the 
precision of statistical comparisons, and don’t understand the role of randomness in sampling, 
among other essential ideas. And there is little space in the mathematics curriculum to further 
explore and integrate these interesting but difficult ideas.  

With so few secondary students actually studying statistics, how can we help students 
come to understand the statistical ideas needed to explore these fascinating large data sets? 

This paper presents a multi-part learning hypothesis to address this problem:  
• That secondary students could and would be interested in statistical ideas in the context 

of exploring real and relevant large scientific and social scientific data sets;  
• That in doing so, they would develop a deeper understanding of both data analysis/ 

statistics and of the scientific/ social scientific content; and  
• That technological tools might be essential in facilitating such explorations.  

COMPELLING DATA 
As mentioned above, the kinds of data that are now available can be quite compelling. As 

one example, a number of government agencies and universities make available a wide variety of 
environmental data. Those focusing just on aspects of climate change include 18 different data 
sets from the National Snow and Ice Data Center (NSIDC) (http://www-nsidc.colorado.edu/), 
data about a variety of greenhouse gases and ozone from the Earth System Research Laboratory 
(ESRL) (http://www.esrl.noaa.gov/), and data about climate change related gases from the US 
Department of Energy’s, Carbon Dioxide Information Analysis Center (CDIAC) 
(http://cdiac.ornl.gov/home.html). There are data about other environmental issues, as well—
environmental toxins and radiation levels, data about tides and ocean currents, data about abiotic 
conditions,  biocomplexity and species distribution in different environments. Other biologically 
related data include a wide variety about diseases and health, about reproductive choices and 
outcomes, about nutrition and water quality, about the human genome, about population trends, 
and so forth. 

There are also a variety of data about physical characteristics of the world—the sun and 
stars and planets and a wide variety of exotic and fascinating astronomical objects such as pulsars 
and black holes, data about the structure of crystals and subatomic particles and the origins of the 
universe. And there are data about human activities—who we are, how long we live, our sizes 
and shapes and family structures, our beliefs and values and political life, our economic activities, 
the ways we communicate or trade, the books we read, the websites we visit, and on and on.  

A number of US government agencies have supported curriculum projects and 
educationally linked data sources to tap the potential of these fascinating topics. For example, the 
National Science Foundation (NSF) has recently funded projects such as the “Pulsar Search 
Collaboratory” (http://www.pulsarsearchcollaboratory.com/) which asks students and teachers to 
use radio astronomy data to look for new pulsars; “OssaBEST,” (http://ossabest.armstrong.edu/) 
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which explores environmental issues on a Georgia barrier island, and “Sharing the Message of 
Global Change” which explores climate data. Other agencies, too, have developed curricula and 
educationally linked data sets: e.g., the National Institutes of Health (NIH)-funded curricula about 
the human genome (BSCS & Videodiscovery, 1999; Horn, 2002); the National Aeronautic and 
Space Administration (NASA)’s “My NASA Data” project (http://mynasadata.larc.nasa.gov/ 
data.html) and “Advanced Composition Explorer” (http://www.srl.caltech.edu/ACE/) providing 
data on the solar wind; the National Oceanic and Atmospheric Administration (NOAA)’s 
“National Climatic Data Center,” (http://www.ncdc.noaa.gov/oa/ncdc.html) and the National 
Estuarine Research Reserve System (NERRS)’s System-Wide Monitoring Project (SWMP or 
“swamp” data: http://nerrs.noaa.gov/Monitoring/) providing weather, water quality and biotic 
data, among many others.  

These and other science and social science topics can be of interest to secondary students 
who are interested in similarities and differences among people, in themselves, in the nature of 
the world around them and in their place in it, and in issues affecting their future and the future of 
the planet. Issues of environmental and social justice may be particularly compelling for some 
students (Gutstein, 2003), and data is often a useful tool in coming to understand these issues.  

Science and social science teachers may be able to build on students’ interests in these 
topics, but may not have the statistical tools and resources to help them explore these issues 
deeply. In fact, there are a number of cognitive issues about understanding large data sets which 
can be addressed in these contexts. 

TECHNOLOGY TOOLS 
Gaining access to interesting data is a critical first step. Unfortunately, too often when 

representational tools are available as part of these data sets (beyond just data tables), they are 
often designed by scientists to reflect research uses, rather than with an eye on learning or 
understanding by the general public. This needn’t be the case, though. Some sources of data are 
also built around new ways to display and represent data, such as Google’s online software 
“Gapminder” (http://www.gapminder.org/world/) which shows relationships among a number of 
international demographic variables over time, providing a more user-friendly representation of 
data.  

Tools for multiple linked representations of data built into commercially available 
educational data analysis software such as Fathom, TinkerPlots and InspireData (formerly 
TableTop) (e.g., Fathom: Finzer, 2005; InspireData (formerly TableTop): Hancock, 2006; and 
TinkerPlots: Konold & Miller, 2004) can also provide powerful tools for exploring data, though 
interfaces to access available data may need to be created. One powerful example of this is 
Fathom’s capacity for downloading and exploring US Census micro-data.  

Representations are important because the inter-relationship between representations of 
data and how people are able to think about data—the affordances these representations 
provide—are critical for educational research and design. Bakker & Gravemeijer say: “We have 
come to see this back-and-forth movement between graphs and informal statistical notions as an 
important heuristic for instructional design in data analysis” (2004, p. 9).  

Even with smaller data sets, people use the available tools to find ways to reduce the 
cognitive complexity of what they’re seeing—e.g., using proportional reasoning around cut points 
to create measures for grouping and summarizing data (J. K. Hammerman & Rubin, 2004). Other 
tools will be necessary to help people deal with additional types of complexity associated with 
large data sets—relationships of multiple variables, cyclical patterns in time series data, 
relationships among variables in space and time. 

CONCEPTUAL CHALLENGES AND OPPORTUNITIES  
What would people need to understand to make use of these interesting data sets, given 

appropriate tools for exploring them? (And what additional tools might help them explore 
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specific different types of data?) The literature suggests a variety of challenges in what students 
(and people more generally) understand or don’t understand about statistics needed to make sense 
of large scientific and social scientific data sets. At the same time, there may be some non-
intuitive conceptual advantages to starting with large data sets rather than smaller ones. 

Aggregate characteristics. Students often have a difficult time coming to attend to 
emergent aggregate features of data sets as a whole (e.g., measures of center, spread, shape) 
rather than attending to individual or groups of cases (Bakker, 2004, p.13-14; Hancock, Kaput, & 
Goldsmith, 1992; Konold & Higgins, 2003; Konold, Higgins, Russell, & Khalil, 2003; Konold, 
Pollatsek, Well, & Gagnon, 1997; Lehrer & Schauble, 2004). Some suggest this move to 
attending to aggregates is developmentally key to making progress in statistics and may go 
through several intermediate stages (J. K. L. Hammerman & Rubin, 2006; Konold, et al., 2003). 
However, it may be that in large data sets, distributional shape (center, spread, etc.) increases in 
salience as individual points seem to matter less when there are so many of them. In such 
circumstances, are students more likely to talk about and compare aggregate features?  

Sample size. People often have a hard time understanding the ideas behind the Law of 
Large Numbers—that aggregate characteristics of data become more stable as sample sizes 
increase (Rubin & Bruce, 1991; Saldanha & Thompson, 2002; Sedlmeier, 1998; Sedlmeier & 
Gigerenzer, 1997). In part, they think of samples as requiring a proportion of the entire 
population. The persistence of such proportional ideas may explain why people are reluctant to 
believe that political polls tapping the opinions of 500 to 1000 people can possibly be 
representative of a country of several million citizens. Yet, starting with a large amount of data 
may provide some non-intuitive advantages. When data sets are large enough, then any 
differences or relationships that can be observed are statistically significant, essentially based on 
the logic of the Law of Large Numbers—when N is big enough, expected variability in aggregate 
measures is small enough that observable differences are unlikely to occur by chance. Once 
students have seen a relationship in data, then asking them whether all these data would be 
needed to find such a relationship can address the Law of Large Numbers from the opposite side. 
That is, now that we know a relationship exists, how few data points would we need to notice it, 
and how sure could we be about it in such cases?  

Practical significance. The fact that small differences observed in large data sets are 
statistically significant raises further questions about the practical significance of any such 
differences. For example, the graphs below show a small statistically significant difference in the 
means of two groups. Yet by most intuitive measures—range, shape, location of the mean (blue  

Value
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( )mean  = 100.467

Collection 1 Dot Plot

  

Test of Collection 1 Compare Means

First attribute (numeric): Value
Second attribute (numeric or categorical): Group

Ho: Population mean of Value  for Boys equals 
that for Girls�
Ha: Population mean of Value  for Boys is not 
equal to  that for Girls�

            Boys      Girls �
Count:      488       512 �
Mean:       100.027   100.887 �
Std dev:    5.30302   4.95724 �
Std error:  0.240057  0.219081 �

Using unpooled variances �
Student's t:  -2.644 �
DF:           984.915 �
P-value:      0.0083

 
Figure 1: Statistically significant difference may not have practical significance 

line)—most students would likely see these distributions as the same. And, for most practical 
purposes, they are the same. If these graphs represented gender differences in scores on some 
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test, a statistician might wonder why girls scored slightly higher than boys on average. But 
teachers and parents would see a lot of variability in scores for both genders with distributions 
that are almost the same. Focusing on the meaning of statistical findings can help students learn 
to use, interpret, and question statistics they encounter in the world.  

Low probability events. At the same time, large data sets provide an opportunity to look 
for low probability events that may be scientifically interesting. Even as students come to think of 
data as a proportionally representative subset of a larger population (Saldanha & Thompson, 
2002), they may have a hard time understanding that this proportional view extends to rare events 
as well—that rare events will (likely) occur if there are enough cases. This idea is tricky because 
it requires students to extend their hard-won multiplicative view of data even to events whose 
most salient feature is that they are highly unlikely, to predict that they will be found.  

Sample v. census. In some cases involving large data sets, the data are not a sample of the 
population but are the entire population—a census. Statistical methods don’t make sense in such 
cases—we already know that a counter-factual hypothesis isn’t true, so statistical methods 
exploring its likelihood under the null hypothesis are nonsensical. Some researchers argue, 
however, that all data are a sample of something—even the complete record of some set of events 
is seen as a sample of the process which produced the record, with the idea that findings from one 
situation could be used to make predictions for future behavior (Frick, 1998). This distinction 
may be essential in such cases, may be an interesting one to explore with students, and builds on 
the exploration of how few data are needed to observe the same relationships noted above. 

Multiple attributes. Sometimes large data sets are large not (just) because of their number 
of cases but (also) because of their number of variables or attributes. Data sets from the social 
sciences, ecology, health and medicine, and about 
internet behavior, among others, often contain a large 
number of variables. In some sense, it is these sorts of 
data sets that the National Science Board is so excited 
about because further analysis could find previously 
undiscovered relationships. Yet there are important 
conceptual difficulties in coming to understand 
relationships among more than two variables at a time. 
The idea of statistical control—that we can look at all the 
data and still be able to say something about relationships 
between two variables holding a third constant—is 
difficult. (Why don’t we take a sequence of subsets?) 
Representing these relationships can also be a challenge. 
Three dimensional graphing tools can certainly address 
this problem but require some effort to be able to 
understand and interpret the resulting “planes of best fit.” 
Sometimes color can be used in a 2-D scatter plot to 
show levels of a third variable. which can help explain 
predicted relationships after statistical control (see Figure 
2). Animations have also been used to show a third variable, especially (but not exclusively) 
when that variable is time. The complexity of depicting these multi-variate relationships increases 
further when there are interaction effects—that is, when the relationship between two variables 
varies by the level of a third. It is an open question whether and how these and other 
representational tools can make such complex data sets accessible to secondary students. 

Data involving time series or spatial proximity. Several of the interesting and available 
large data sets depict relationships where time features prominently. Accounting for cyclical 
features of such data to look for other relationships may require tools to factor out the auto-
correlative behavior. While students should be able to understand the existence of cyclical (e.g., 
daily, weekly, seasonal) behavior, they may not need to understand technical aspects of how to 
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Figure 2: Color and regression lines 
tracking three levels of a third variable 
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deal with these. Similarly, if students are exploring geographically/ location-linked data, they 
may not need to understand how to create spatially linked statistics, even if they can informally 
describe clustering/ patterns in the data. Creating tools that may facilitate these explorations will 
help in deciding whether students will be able to succeed in engaging with such data.  

CONCLUSION 
Large scientific and social scientific data sets hold much promise for engaging students in 

statistical explorations. However, much work remains to be done to understand how students 
think about such data, and to create software exploration tools and appropriate curriculum 
materials that will support deeper learning about the statistical and content-related ideas. 
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