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ABSTRACT 
This research study investigates the development of middle school students’ emerging expressions of 
uncertainty through observation of 14- to 15-year-olds, challenged in informal inferential reasoning. 
This study focuses on students’ investigations when sampling from populations and using information 
from the samples to draw conclusions about the parent populations. The results suggest that when the 
students engaged in processes of drawing generalised conclusions from data, involving generalising 
beyond data and using data as evidence of the generalisation, they developed probabilistic language 
to articulate the degree of certainty embedded in the generalisation. As the students engaged in their 
inquiries, they developed more sophisticated expressions of the probabilistic language. Attending to 
students’ emerging articulations of uncertainty when making judgments about the underlying 
structure of the data and observing patterns and trends in data, provides an opportunity to develop 
more sophisticated understandings of the developmental process of students’ statistical inferential 
reasoning. 

 

INTRODUCTION 
 Statistical inference is the process of drawing conclusions about populations, using datasets 
drawn from the population of interest via some form of random sampling that is subject to random 
variation, such as observational errors, or sampling variation. In essence, statistical inference aims to 
infer an unknown parameter for a given population, based on a sample taken from the population. The 
aspects studied by statistical inference are divided into estimation and hypothesis testing. We employ 
the term ‘statistical inference’ to refer to a group of common forms of statistical schemes addressed 
by an estimate (i.e., a particular value that best approximates a parameter of interest); a confidence 
interval (i.e., an interval constructed using a dataset drawn from a population so that, under repeated 
sampling of such datasets, such intervals would contain the true parameter value with the probability 
at the stated confidence level); critical values; p-values; and posterior distributions. More generally, 
statistical inference deals with the specific type of uncertainty caused by having only data from 
random samples obtained from populations rather than having data from the entire population, 
process, or distribution.  
  This paper focuses on students’ reasoning about, and conceptions of, statistical inference. 
Initially, we build on what is already known about students’ intuitive reasoning. Such intuitive 
reasoning about statistical inferences has been described as informal inferential reasoning, a process 
of making generalisations, including conclusions, predictions and estimating parameters beyond 
describing the given data (Makar & Rubin, 2009), and comparing datasets to a conceptual model 
(Bakker et al., 2008). Moreover, the following principles were identified by Makar and Rubin (2009) 
as essential for informal statistical inference: the use of data as evidence for making generalisations 
and the employment of probabilistic language in describing the generalisation, including informal 
references to levels of certainty about the conclusions drawn. Research on informal statistical 
inference has been conducted on tertiary settings (Zeiffler et al., 2008), secondary (e.g., Prodromou, 
2013a, 2013b; Watson, 2008), and primary schools (Makar & McPhee, 2009). 
 Inspired by Wild et al. (2011), who identified “a minimal set of the biggest ideas of statistical 
inference” and “integrated inferences for beginners within a holistic view of the investigative cycle 
(Wild and Pfankuch, 1999),” this paper adopts a “wholly visual approach” (Wild et al., 2011, p. 252) 
that will, attempt to minimize the conceptual distances between the concrete realities, including 
precursor practical experiences, and the dynamic imagery envisaged. Our ideal, moreover, has the 
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inferential step able to be performed without students taking their eyes of their graphs so that the 
connections between question, data and answers are kept as immediate and possible as possible. (p. 
252)  
 It is hoped that this approach will help provide more intuitive connections to the more formal 
methods to be built and used later.  
 Students cannot make statistical inferences without an appreciation of the difference between 
description and inference. Whereas descriptive statistics are used to describe a sample’s 
characteristics, inferential statistics are used to infer something about the population based on the 
sample characteristics.  
  These characteristics together with sampling variation are the critical elements that statistical 
inference was developed to deal with. In essence, a hallmark of any conceptual approach to statistical 
inference must derive from a good understating about the nature and behaviour of sample variation. 
The term ‘sample variation’ denotes the variation derived from the selection of a sample that 
represents their parent population to a greater or lesser extent. When making inferences, one attempts 
to account for the uncertainty due to having only a sample rather than having data from the whole 
population. One can obtain an idea of the extent to which sample data are likely to represent the 
parent population by looking at the properties of the data (e.g., by computing means or other statistics) 
over repeated samples or by examining the patterns of sampling variation. The uncertainty caused by 
sampling variation and the degree of uncertainty allowed for are estimated when studying patterns of 
sampling variation. Understanding such sampling variation and the degree of its uncertainty are of 
major importance for making decisions about populations in all empirical sciences, including 
psychology, healthcare, and education (Belia, et al., 2005).  
 
THEORETICAL FRAMEWORK  
  Statistical inference, including use of hypothesis tests and confidence intervals, is one of the 
primary aspects of most curricula in statistics. However, students are usually prone to fall into many 
misconceptions when making statistical inferences (Kirk, 2001) because inferential statistics involve 
understanding many abstract concepts such as sampling distributions and significance levels. 
Research has shown that many students often are unable to integrate the fundamental concepts in 
inferential reasoning (Batanero, 2005). In particular, Chance et al. (2004) suggested that large 
numbers of students had difficulties comprehending sampling variation of means when using 
computer animations.  
  This has led researchers to suggest that,  

since statistical inference (used in its conventional sense) is designed to deal with 
uncertainties about the true state of nature due to sampling variation, we believe that 
experiences that are designed to build and cement the ideas of statistical inference should 
focus solely on sampling variation. (Wild et al., 2011, p. 253)  

  Wild and his team (2011) pointed out that variation such as ‘random measurement error’ 
mainly focuses on planning and critiquing investigations and not on introducing the core ideas of 
statistical inference. Research on informal statistical inference has reported that teaching experiences 
that require users to interpret the “centre differences” have often employed on context matter 
knowledge (Watson, 2008) throwing yet another complication into students’ consideration of 
description versus inference. Wild et al. (2011) argued that critiquing the plausibility of an inference 
draws on knowledge of context, as does any attention to the practical importance of any differences 
seen among the patterns in data. To avoid any complications introduced by integrating knowledge of 
context and knowledge about inference, they propose that pedagogical exercises on informal 
statistical inference be visually oriented, drawing solely on patterns in data that are not closely linked 
to context, decision logic, and probability. Wild et al. (2011) propose decision guidelines that were 
devised to support the New Zealand high school statistics curriculum. Their decision guidelines 
involve 4 milestones, with students reaching one milestone per year of schooling, and with milestone 
4 being targeted for the last year. The proposals of Wild et al. (2011) focused both on conceptual flow 
and on classroom implementations presented in terms of sampling from populations. Their proposals 
are built from particular conceptions of sampling variation built by using animated, computer-
simulation-based boxplots.  
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  They consider that boxplots provide a natural “bridge between reasoning entirely from 
graphics to reasoning from summaries in ways that converge, qualitatively, to the two-sample t-test” 
(p. 254) between operating entirely in terms of what is seen in graphics to reasoning using summaries 
The latter, are graphically depicted in a basic boxplot (box-and-whisker diagram or plot) creating the 
visualisation of the shape of the distribution, its central value, and variability.  
  Wild et al. (2011) tried to convey to their readers the sampling variation by using animated 
computer-based boxplots and figures intended to convey ideas about how to read inferential 
information from the box blots. The visualisation of sampling fluctuation is compiled by the 
superposition of repeated boxplots. The authors reported on 4 milestones.  
  Milestone 1 involves (a) an appreciation that samples can provide us with useful approximate 
pictures of populations, (b) an ability to observe approximate location changes in boxplots, (c) an 
appreciation that the story told by the data about the population can be wrong, and (d) an appreciation 
that the shift that is observed in data must be reasonably significant before we can fairly safely infer 
the direction of a population effect from the direction of a data effect.  
  At milestone 2, all of the milestone 1 points (a)-(d) should be reinforced. We are no longer 
just concerned with the relationship between a single sample and a single population, but that now 
we're talking about multiple samples from the same population, or even multiple samples from 
multiple populations. Milestone 2 adds two new requirements to the first milestone: first, the sample 
size should be taken into account when seeing shifts of canters in data, and, second, a change of 
attention towards distance between centres as a proportion of a spread. The authors first attempted to 
compare the distance between medians with the sum of the interquartile ranges but they were 
informed by the teachers that it was too difficult for their students, thus this conversation led 
researchers to the ‘overall visible spread’ idea. They obtained the cut-off proportions that are depicted 
by using simulations with normal data. 
  The type I error rates are about 8% at the anchor sample sizes. There was a trade-off between 
more conventional type I error rates at memorable sample sizes and having a simple rule. For 

example, the round number sample sizes with approximate 5% type I error rates are n=40 for 
ଵ

ଷ
, n=80 

for 
ଵ

ସ
 and n=125 for 

ଵ

ହ.
. The type I error rates with data from the strongly skewed or heavy tailed 

distribution are similar at the anchor sample sizes to those from the normal distribution.  
  Milestone 3 continues the convergence towards the big idea of the t-statistic. They used 1.5 
multiplier, increasing the large sample type I error rate with normal data slightly from about 2% to 
about 2.5%. Additionally they drew a thick horizontal line in place of a notch. This is approximate 
90% confidence intervals. They then used the non-overlap of individual uncertainty intervals to show 
significance. They believed that by operating this way, they worked with Type I error rates for 
significance tests for a difference that ate much smaller than the convergence error rates for the 
individual parameters.  
  Milestone 4, brings in the notion of null hypothesis, levels of variational behaviour under the 
null hypothesis due to sampling or randomization, normal distribution models, alteration of emphasis 
for measures of location and spread from the median and interquartile range to the mean and standard 
deviation, and formal methods of inference based on t-tests and randomization. 
  Borovcnik (2011) mentioned the poorer behaviour of the milestone 3 rule that is caused by 
the ‘intuitive intervals’ that treat extreme and usual cases as equally likely. He found milestone 3 to 
not be a smooth progression to a more conventional milestone 4 of formal statistical inference because 
the procedure widens the confidence interval precluding a probabilistic argument. This paper, instead 
of dismissing that milestone 3 is not a smooth progression to a more conventional milestone 4 of 
formal statistical inference or eradicating students’ difficulties in constructing probability arguments; 
it considers students’ difficulties as starting points that provide a pedagogical challenge of how to 
build on learners’ impoverished understandings when making statistical inferences. This research 
study is interested in investigating how students reason about the intervals for the median and make 
probabilistic arguments about the difference that there is back in the populations. 
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METHODOLOGY 
  Thirty students in Year 9, ranging from 14 to 15 years in age, from a rural secondary school 
in New South Wales, Australia, formed the population of this study. The researcher spent 2 sessions 
(40-45 minutes each) introducing the class teacher and the students to Geogebra4.2 during regular 
mathematics lessons. All students were familiarised with the Geogebra4.2 software, explicitly 
focusing on learning skills related to the software.  
  In the first session, all students were familiarized with Geogebra4.2 software through a 
number of introductory activities related to creating statistics summaries, graphing data, and 
comparing data sets. In the second session, all students analysed data about students’ (Years 7−9) 
weight of backpacks. The students of the research study were asked to compare the students’ (Years 
7−9) weight of backpacks and how it differs compared to the national average weight (5 kgs.) of 
students’ (Years 7−9) backpacks. In this study, we observed students to compare female and male 
students’ (Years 8) weight of backpacks. The student participants were asked to limit themselves to 
sample sizes of around 20-40 students (one classroom for each year). This requirement had the 
advantage of simplifying the procedure at the cost of limiting its utility.  
  The participants used features of Geogebra4.2 to construct two parallel Boxplots (Figure 1). 
The two boxplots summarize data from Year 8 students’ weight of back bags. Whereas Boxplot A 
summarizes data from girls’ (Year 8) weight of backpacks, Boxplot B summarizes data from boys’ 
(Year 8) weight of backpacks. 
  The qualitative research study was questioning-based and observation-based. The researcher 
was a participant observer who asked students questions and probed into students’ reasons or 
intuitions that might explain their actions. The participant students were asked to reason about the 
intervals for the median and make a probabilistic argument about the observed difference that  
 

 
Figure 1: Boxplot A summarizes data from girls’ (Year 8) weight of backpacks, Boxplot B summarizes data 
from boys’ (Year 8) weight of backpacks.  
 
there is back in the populations. While the students were working, Camtasia software was used to 
video record of the computer screen output and audio record the students’ voices. At the first stage, 
the audio recordings were simply transcribed and screenshots were incorporated as necessary to make 
sense of the transcription.  
  Subsequently, the data were then analysed using progressive focusing (Robson, 1993), a 
process by which the author began with a wide field of focus and gradually narrowed the field by 
identifying key foci for ensuing study. A challenge that arose in such a qualitative research study was 
that of coordinating multiple levels of analysis. The effects of these threats were attenuated only by 
careful attention to the multi-faceted concepts of validity (e.g. content validity, construct validity, 
internal validity, external validity, concurrent validity, ecological validity, interpretative validity, 
theoretical validity etc. (Cohen et al., 2000, p. 106)) and reliability throughout this research study. In 
addition to generalisability as a criterion to external validity, the researcher focussed on certain 
common threads of students’ articulations and looked for the applicability of those threads across the 
30 students’ activity. Those common issues may appear to readers as transferable to other settings, 
and situations.  
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RESULTS AND IMPLICATIONS  
 A qualitative analysis by the researcher of her discussion with the students on the comparison 

of box plot distributions was performed. Students observed that the median for the sample of girls’ 
(Year 8) weight of backpacks was 4.25 kgs and the median for the sample of boys’ (Year 8) weight of 
backpacks was 5 kgs. To operate the milestone 2 test, students did a quick freehand subdivision of a 

line representing total visible spread into thirds and make the decision on that basis. They found the 
ଵ

ଷ
 

of overall visible spread to be 1.71 and concluded that A tends to be bigger than B back in the 

populations because the distance between the medians that is 0.75 is smaller than about the  
ଵ

ଷ
  of 

overall visible spread.  
 The students followed the Level 7 (Milestone 3) guideline to construct informal confidence 

intervals that capture the population medians (Figure 2). They calculated the interval estimates 
(confidence interval) for the population medians for A and B. They found the confidence interval for 
the population median for A to be (3.169, 5.333) and for B to be (3.721, 6.279).  

 

Figure 2: Development of formula for confidence interval (Milestone 3) 
 

 The researcher asked students explain their thinking about the confidence intervals for the 
population medians. The students articulated that “the confidence intervals contain all the medians 
and the actual median is likely to be in the confidence interval”. The researcher continued with asking 
students what they meant by “is likely to be”. The students replied: “I am not very sure… uncertainty 
is involved”. The researcher asked students to explain how uncertainty is involved. The students 
replied: “Several factors affect the uncertainty of estimating the confidence interval for the population 
median such as sample size, the amount of variability in the population being study or spread of 
population, estimated with sample IQR”. Another student added that he wanted to be confident that 
the interval estimate contains the true population median. The researcher asked: “How confident do 
we want to be that our interval estimate contains the true population median?” The student replied: 
“we have already mentioned three factors that influence confidence intervals: Sample size, variability 
in the populations. I will never be 100% confident. I will be confident if I know that we predict the 
population median 90% of the time.” The researcher asked the students to explain. The students very 
well-articulated: “The interval includes the true population median for 9 out of 10 samples - the 
population median is probably in the interval somewhere.” 

 The researcher shifted students’ attention to sampling variation, asking students whether the 
sampling variation can produce a shift large enough so that the students can make a mistaken claim. 
Students explained that,  

when the populations do not overlap, they are able to make a claim about the populations. 
When the calculated intervals do not overlap, a confidence interval for the difference in 
the population medians ranges from the smaller distance between the intervals to the 
larger distance between the intervals.  
 Another student added that they were looking for sufficient evidence, a big enough shift in the 

intervals for the median to be able to make a claim that there was a difference back in the populations. 
The researcher asked the student what he meant by “sufficient evidence”. The student explained:  

Sufficient evidence includes all possible significant results. This means that our data 
provides us with insights that give ‘something out of the ordinary’… something that 
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would have had a very small probability of happening just by chance… Or when you 
compare data sets, the difference in the groups of data is so big that it would be hard to 
say it was just a coincidence.  
 

  The researcher asked students to explain their articulation by giving an example. The students 
articulated:  

When we compare two drugs that treat cancer...If a drug is found to be more effective at 
treating cancer that the current treatment is, we can tell that the new drug shows 
improvement in the survival rate of patients with cancer. That means that based on data, 
the difference in the results from patients on the new drug compared to those using the 
old treatment is so big that it would have hard to say it was just a coincidence.  
The results of implementing milestones 1-3 showed that students were able to reason about 

possible features of a population based on a sample of data drawn from the given population. The 
collected data also indicates that participants can use their informal statistical knowledge to reason 
about possible differences between two populations based on observed differences between two 
samples of data.  
 The present study provides new insights in participants’ intuitive reasoning about the 
differences due to an effect as opposed to differences due to chance. In this study, students 
appreciated whether a specific sample of data is likely to have a particular characteristic that is being 
studied under a particular claim. For example, students reasoned about whether the actual population 
median is likely to be in the confidence interval.  
 The students of this research study found the procedure of calculating the confidence intervals 
counterintuitive statistically and somehow misleading because the extreme and usual cases were 
treated as equally likely. The results suggested that students articulated colloquial notions of chance 
reasoning that expressed uncertainty of conclusions drawn from sample data in the light of variability.  

On limitation of this study is that no sessions followed up to assess whether the students could 
apply these approaches to new situations at a later time. Future research needs to investigate more 
systematically students’ informal inferential reasoning about the uncertainty of claims made from 
sample data. Further search needs to clarify what aspects of formal inference are needed given current 
tools, approaches and methods to foster students’ ability to use and understand conceptions of the 
more conventional milestone 4 of formal statistical inference. 
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