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Probability is the basis for intelligent actions and decisions in the face of uncertainty. That includes 
statistical inference as well as considerations of reliability, risk, and decision-making. Curricula have 
reduced approaches with respect to the nature of probability. With easy access to computer technology, 
simulation has become the predominant approach to teaching. Although simulation is an effective 
method to replace complicated mathematics, it reduces concepts to their frequentist part. This 
culminates in an approach to informal inference that makes probability and conditional probability 
redundant. However, the relevant properties of statistical inference require a comprehensive conception 
of probability to be shaped in the individual’s cognitive system. 
 
INTRODUCTION 

Foundational papers that clarify the relationship between probability and statistical inference 
require a wide spectrum of probability interpretations. We show that a discussion of the advantages and 
drawbacks of different approaches is necessary. We need to pay more attention to the different meanings 
of probability (equally likely, frequentist, and subjectivist) and shape a solid understanding of 
conditional probability and the Bayes formula. To build on this idea, we outline five pillars that link 
probability to inference. The first two pillars draw on the rich experience of playing and analysing games 
to develop reliable intuitions. The third pillar covers subjectivist meaning. The fourth pillar focuses on 
the need to connect to statistical inference in the early phases of probability teaching, and the fifth pillar 
relates to the intersection between probability and risk. The paper advocates a multi-method approach 
to teaching (and learning) statistical inference that includes classical and Bayesian methods rather than 
a reduced framework. Curriculum reforms should focus on the key role of conditional probability for all 
approaches to statistical inference and on a sound understanding of probability within a wider 
interpretation of statistical inference. 
 
CORNER PILLARS FOR LINKING PROBABILITY AND STATISTICAL INFERENCE 

Difficulties in understanding statistical inference are legendary. Since the first attempts to 
revitalise probability teaching in the 1980’s through inference, the didactic discussion has been 
dominated by proposals to simplify the methods. In his effort to describe probability literacy, Borovcnik 
(2021) lists corner pillars of probability that all are connected to statistical inference. 

 
Beginning Early and Develop the Ideas and Concepts in a Spiral Way (No. 1)  

We can introduce statistical inference at the earliest possible stage. Creative tasks that make one 
of the main purposes of probability visible right from the beginning date back to Varga (1983). With 
9(!) year-old children, Varga investigated the behaviour of chance with respect to runs of heads and tails 
in coin tosses and gets into the middle of inferential considerations when the children are asked to judge 
whether a specific protocol of coin tossing was real or was “invented” by those who wrote the protocol. 
That makes probability relevant in games and allows enough time for the concept to emerge in children 
and for it to be revised and adapted to the purpose of decision-making in the form of a statistical test. 
As Fejes-Tóth et al. (2022) note, “familiarity with combinatorial thinking makes the introduction of 
statistical hypothesis testing feasible. … it is didactically helpful to base the introduction of a complex 
method for making decisions … on combinatorial skills” (p. 5). 

 
Using Games Intelligently to Induce Sustainable Probabilistic Intuitions (No. 2) 

Using games of chance intelligently, rather than routinely, is the striking counter argument to 
those who criticise games of chance as irrelevant to teaching. The coin toss experiment by Varga (1983) 
is evidence of intelligent use of games. Such games are also useful in shaping connections between two 
central meanings of probability, namely the classical interpretation of proportions and the frequentist 
meaning of probability. The classical meaning can be applied to cases with equally-likely outcomes. 
The frequentist meaning of probability is useful for general cases where an equally-likely argument 
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(possibly based on the physical symmetry of a device producing the elementary outcomes) is missing, 
but the idea of experiments repeated under the same conditions applies (as in physical experiments). 
Steinbring (1991) refers to a complementarity between the concepts of equally likely and frequency and 
notes that the conception of probability requires both aspects. The interplay between probability 
assumptions based on equally-likely cases and the development of relative frequencies in turn leads to 
issues of statistical inference. That is, to understand probability properly, questions of statistical 
inference play a key role. On the other hand, to develop an understanding of statistical inference, an 
adequate conception of probability is a prerequisite. 

 
Build Thinking in Bayesian and Risk Terms as Early as Possible (No. 3)  

Bayesian ideas relate to thinking—as opposed to applying routinely mathematical concepts—
and to conditional probability, integrating an impact that may be attached to an event under uncertainty. 
Carranza and Kuzniak (2008) have highlighted the problematic nature of conditional probability and the 
Bayes formula. Problems arise from the failure to extend the modes of meaning of probability to a 
subjectivist interpretation, which is a qualitative evaluation of a statement in terms of an abstract weight 
index. Such an evaluation is often misunderstood in a sense as if it were feasible to assign an arbitrary 
value to the probability. A qualitative judgement about the probability of a statement, on the other hand, 
is based on a person’s preference system towards statements and is a mathematical expression of 
preferences. The main difference with the other meanings is that probability here is a property of the 
person’s preferences, whereas equally likely and a frequentist interpretation of probability are associated 
with an objective world (with the device that generates the outcomes or with the conditions of the 
physical process that leads to the outcomes of interest). The usual attributes associated with this are 
subjective and objective as if the person’s judgement must be subjective (arbitrary) and the property of 
the process or device objective (scientific and undisputed, though perhaps unknown). Yet, we only 
recognise the person’s judgement and the property of “the world.” The person’s judgement must be 
based on qualitative knowledge and is therefore anything but arbitrary. For more details, see Migon and 
Gamerman (1999) or the lively discussion in The American Statistician’s Teachers’ Corner (Witmer et 
al., 1997).  

These details include various meanings of probability and their justification by an axiomatic 
theory, which, incidentally, is provided by Kolmogorov (1956) for frequentist and by de Finetti (1937) 
for subjectivist probability. Bayes’ formula is key to any procedure of statistical inference, which shows 
that statistical inference is void without a sound knowledge of conditional probability and a balanced 
conception of probability that includes the equally likely, frequentist, and subjectivist meanings of 
probability. To understand classical methods of statistical inference, it is necessary to develop a 
profound knowledge of probability, including Bayes’ formula. Otherwise, the usual misinterpretations 
will occur. As Diepgen (1992) states, “The student nowadays can misinterpret the significance level in 
Bayesian terms only because he has nowhere learned about a Bayesian alternative to the significance 
test” (p. 52). This makes it clear that statistical inference requires a broader concept of probability that 
includes not only Laplace probability and the frequentist view, but also a subjectivist interpretation. 
Another advantage of Bayesian problems is that they naturally link probability with risk. 

 
Linking Probability and Statistical Inference from Early Teaching (No. 4)  

Apart from games of chance, where there is a clear notion of the magnitude of the probability 
of an event as a ratio of favourable to possible elementary outcomes, early probability teaching pays 
much attention to the empirical law of large numbers. This is meant to motivate a frequentist meaning 
of probability but immediately leads to the questions of what probability value is justified for an event 
under investigation. Moreover, how can one claim to have enough data to guarantee that an empirical 
estimate of probability is good enough? That means that a project is doomed to failure from the start if 
probability remains disconnected from statistical inference. This insight influenced curriculum efforts 
in the mid-1980’s, and it soon became clear that statistical inference would widen the focus to include 
several probability interpretations. 

It is a twist of the history of statistics education that in the attempt to expand the meaning of 
probability from the equally likely to a frequentist interpretation, it soon became clear that the 
methodology had to go beyond this and either integrate a subjectivist connotation or accept serious 
logical flaws (Hacking, 1965). This is precisely the dilemma that Carranza and Kuzniak (2008) have 
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identified in relation to Bayes’ formula. It mirrors the controversy in the foundations of probability 
(1930’s–1980’s), where the case of inference (either Bayesian or statistical) became the source of 
dispute over which meaning was superior to probability (see Hacking 1965). In addition to debating 
which interpretation was appropriate for teaching probability, it became an urgent task to find ways of 
learning to reduce the complexity of statistical inference. Simulation and resampling methods were on 
the rise with the expansion of computer power in the 1990’s. Yet, it was still only a vision until Cobb 
(2007) proposed replacing statistical inference entirely by resampling, not only for educational purposes 
but also for the discipline in general. Accordingly, an approach called informal inference developed, 
based on resampling. Rossman (2007) described informal inference as, “going beyond the data at hand 
and seeking to eliminate or quantify chance as an explanation for the observed data through a reasoned 
argument that employs no formal method” (p. 1). delMas (2017) called the approach simulation-based 
inference, but we use the terminology of informal inference (although we do not refer to the mass of 
other loose arguments subsumed under informal inference). Borovcnik (2021) summarises the criticisms 
of informal inference as follows: “[One criticism] was the reduction of probability to a degenerate 
frequentist conception; another was that statistical inference involves complex concepts such as type II 
errors and that this would no more be expressible within a pure resampling framework” (p. 3). Although 
informal inference reduces probability to its frequentist aspect and makes probability redundant because 
everything is solved by simulation, Batanero and Borovcnik (2016) focus on scenarios that are 
embedded in a context that naturally reduces the complexity and has an intuitively accessible meaning 
for the concepts involved. This approach corroborates the perception of quality indices of statistical tests 
as conditional probabilities, whereas in informal inference the character of such indices degenerates into 
absolute numbers if only it is possible to address them. 

 
Develop the Twin Relation Between Probability and Risk (No. 5)  

The twins of probability and risk emerged from a common historical development (see 
Borovcnik & Kapadia, 2018), which often makes it difficult to identify whether a trait or property 
belongs to one or the other. Situations under uncertainty are not only about quantifying the degree of 
uncertainty, probability, but also about the consequences of the outcomes, i.e., impact, which leads to 
the second key purpose of probability, namely risk. There is a vast literature on risk with inconsistent 
use of terms (see Borovcnik & Kapadia, 2018), which is very confusing. Yet, the problem is mainly 
whether risk should encompass the probability of an “adverse” outcome and its impact (cost, benefits), 
only the probability of the adverse outcome, or only the impact, or whether risk should not refer directly 
to the adverse outcome but indirectly to factors that can potentially cause the adverse outcome. Such 
risk factors are also called hazards. For a definition of risk, see Borovcnik (2015). For current 
considerations, one aspect of risk is striking because it blurs the perception of probability: it is difficult, 
if not impossible, to separate an assessment of probability from impact. If an impact is large, positive, 
or negative, people tend to neglect the probability of the event. Moreover, there is a difference in 
people’s behaviour; according to Kahneman and Tversky (1979), they are risk-seeking in loss situations 
and risk-aversive in gain situations. Such psychological biases clearly show how difficult statistical 
inference is, apart from the mathematical details and methodological issues. 

 
UNDERSTANDING STATISTICAL INFERENCE BY CONDITIONAL PROBABILITY 

Conditional probability plays a key role in both Fisher’s significance test and Neyman-
Pearson’s test policy. By analogy with medical diagnosis, the conditional probabilities “inverse” to Type 
I and II errors are crucial to the quality of a diagnosis of a particular person as opposed to a long-term 
quality index. Two situations are compared that have the same long-term errors but reflect a different 
quality of one-off decisions. This leads to the underlying prior probability of the disease and its essential 
role for inference, whether it is hidden (classical inference) or explicitly treated (Bayesian inference). 
Rather than favouring one approach, the methods of inference should be clarified by using conditional 
probabilities. 

 
Fisher’s Significance Test and Neyman and Pearson’s Test Policy 

In conceptualising inductive inference, Fisher (1971) focused on the so-called null hypothesis, 
H0. He intended to provide an objective approach to inductive inference that avoided use of Bayes’ 
formula (inverse probability), that is, instead of the probability of the hypothesis H given data x, i.e., 
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P (H | x), he used the direct probability P (x | H). Fisher claimed that it is possible to infer causes from 
consequences and hypotheses from observations. He considered the distance between the data and the 
null hypothesis sufficient to reject the null if P (x | H0) is small enough (for continuous distributions, 
probabilities must be replaced by likelihoods). According to Fisher, a significance test is a procedure 
for determining the probability of an outcome and more extreme outcomes given a null hypothesis with 
no effect or relationship. Regarding his preferred significance level of 0.05, Fisher emphasised that this 
did not mean that the researcher allows himself to be deceived once in every twenty experiments. The 
test of significance only tells him what to ignore, namely all experiments with non-significant results. 
For Fisher, the significance level represented an abstract measure of discrepancy between data and the 
null hypothesis, so that the significance level of a test is void of any sampling interpretation. Neyman 
insisted that a test must consider an alternative in conjunction with the null and that a test represents a 
decision in which two different types of errors occur. He interpreted these errors as long-run frequencies. 
The next section presents the situation in the context of process control from which the ideas originated. 
Almost from the beginning, when they published their ideas on statistical testing, Fisher and Neyman 
were embroiled in controversy (Hubbard & Bayarri, 2003). What is used today as statistical inference 
is a hybrid that reconciles the major philosophical and methodological differences. We develop the idea 
that evaluating a statistical test for Type I and II errors misses the point. 

 
Risk in Statistical Inference—Risk of Wrong Decisions in the Long Run 

Rather than validating a null hypothesis in the face of empirical evidence, Neyman and Pearson 
developed their policy of repeated testing in the decision-oriented context of process control (Neyman 
& Pearson, 1928). For example, a decision is sought given data on two hypotheses: a normal level of 
defectives in production is 4%, and an unacceptable level is 10% defectives. A threshold must be set for 
the percent of defectives in the sample that allows the size of the decision errors to be “controlled” for 
the different scenarios. Because the context allows for repeated decision-making under the same 
conditions, it makes sense to interpret Type I and II errors in terms of relative frequencies in the long 
run. Yet, it should be noted that the error probabilities are not absolute probabilities at all, but conditional 
probabilities in relation to the respective scenario. A Type I error is the erroneous rejection of H0, which 
is P(“sample is in the rejection region” | H0), and a Type II error is the erroneous non-rejection of H0, 
which is P(“sample is NOT in rejection region” | H1). This insight that we are dealing with conditional 
rather than absolute probabilities is blurred by language that allows for descriptions that omit the 
restriction of the statements to the specific scenario, such as “given that,” “conditional on,” under the 
circumstance that the production is under control,” etc. 

 
Analogy Between Medicine and Statistical Tests—Risk of One-off Decisions in Medical Diagnostics 

It is up to the reader to translate the above scenario into the context of diagnosing a particular 
disease when some laboratory parameters are used. If H0 is subsumed by the state that the patient does 
not have the disease under investigation, and H1, the patient does have it (Ca, for Carcinoma), then a 
Type II error means that the patient is diagnosed as disease-free, which is called negative (–), even 
though the patient has the disease. A diagnosis of positive (+) indicates that the person has the disease: 
Type I error = P (+ | H0) and Type II error = P (– | H1). In a radiologic clinic and screening, we may have 
data as in Table 1. In medical jargon, we speak of specificity for the probability of a negative diagnosis 
given H0 (not this disease), and sensitivity for the probability of a positive diagnosis given H1 (the disease 
is present); false positive and false negative correspond to Type I and II errors. The analogy between a 
statistical test and the decision associated with a diagnostic procedure makes it clear that there is a more 
relevant probability than the two types of errors for describing the quality of a diagnosis, namely the 
probability that a patient actually has the disease in question given that the person has a positive 
diagnosis, which is a one-off decision. This is called the positive predictive value (PPV). Analogously, 
the negative predictive value (NPV), is for the case of a negative diagnosis. We calculate these quality 
indicators—either per row or per column—that apply if we randomly select one person out of these 
groups. From the associated probabilities (in Table 2), the quality indices used in statistical tests, namely 
Type I and II errors (or sensitivity and specificity) miss describing the key aspect of the quality of the 
diagnostic procedure. The clinic and screening situations have the same indices. Yet, PPV and NPV are 
strongly dependent on the context, so that a positive diagnosis is valuable in the clinic although it is 
useless in screening. 
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Table 1. Patients in clinic and screening with their confirmed status of disease and the diagnosis  
 

 Radiologic Clinic   Screening 
 –  +    – +  

H0 
No 

96 
Specificity ® 

4 
False pos. ® 

100 
  No 95232 

NPV ­ 
3968 

 
99200 

 
H1 
Ca 

20 
False neg. ® 

80 
Sensitivity ® 

100 
  Ca 160 

 
640 

PPV ­ 
800 

 
 116 84 200   95392 4608 100000 

 
Table 2. Quality indices or error of different types for the radiologic clinic and the screening data 

 
 Prevalence Sensitivity ® Specificity ® PPV ­ NPV ­ 

Clinic 50.0% 80.0% 96% 95.2% 82.8% 
Screening 0.8% 80.0% 96% 13.9% 99.8% 
Formula P(Ca) P(+ | Ca) P(– | No Ca) P (Ca |+) P (No Ca | –) 

 
CONCLUSION 

The analogy between statistical tests and medical diagnosis helps to see that the prior probability 
of the null hypothesis is missing. The controversy in the foundations is due to the prior probability. Its 
status cannot be a frequentist probability, but is a qualitative degree of belief, a subjectivist probability. 
Thus, to simplify the complexity of inference in any didactically sensible way, we would get a caricature 
of the concepts involved. Any reduction of complexity based on a purely frequentist conception of 
probability fails to resolve the conceptual issues. Similarly, a Bayesian approach may be more intuitive 
and lead naturally to statistical inference (Albert 2002), yet it misses the full concept of probability. For 
this reason, Migon and Gamerman (1999) and Vancsó (2009) suggest teaching classical and Bayesian 
inference in parallel. Two statements by Vancsó’s prospective teachers might convince readers, “I 
understood the confidence interval only after I had become more familiar with the Bayesian region of 
highest density” (p. 199) and “I really like the Bayesian method because I saw … why the people have 
different opinions ... Because different people may have different prior distributions” (p. 199). 

Other problems for statistical inference are the case of small probabilities and the logic of 
repeated decisions. Borovcnik (2015) shows how difficult it is to obtain reliable information from data 
about a probability of only 10-4, so that small probabilities have to be modelled using assumptions, 
leading to a qualitative rather than frequentist connotation. And, statistical inference is full of small 
probabilities. Furthermore, the optimal decision depends on whether a decision is made one-off or 
repeatedly. That means that an insurance company, for example, must pursue a different strategy than 
the person who takes out an insurance policy. In the medical field, a decision made by a state differs 
from an optimal decision made by a private individual because of the different logic of repeated 
decisions, not to mention the differences in the benefits and interests of stakeholders at different levels. 
Albert (2002) or Hoegh (2020) make an argument for including Bayesian ideas in the curriculum. Our 
considerations advocate a pluralistic perspective on probability that implies a comparative statistical 
inference, transferred from a philosophical analysis (Barnett, 1982) to the educational corner. This paper 
outlines its necessity. 
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