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Our main goal is to show that we can use classical and Bayesian statistics, including theoretical 
background, for introducing statistical inference in Hungarian high schools. In a first step, we will test 
the material we are developing with higher-level students. We introduce the concept of the project, 
including its theoretical background and previous pilot teaching experiments. The basis is the parallel 
introduction of classical and Bayesian methods of statistical inference. Long-term experience from 
research work and from seminars with future teachers provide evidence that this parallel approach is 
useful. Our framework is from the project “Guided Discovery in Mathematics Education,” that can be 
classified in different inquiry-based education forms (see Artigue and Blomhøj, 2013).  
 
INTRODUCTION: STATISTICS TEACHING IN HUNGARIAN SCHOOL MATHEMATICS  

Tamás Varga started his “Complex Mathematics Education” in the early 1960’s, and in 1978 a 
new curriculum for all primary school levels (grades 1–8) was introduced. It was the first time that 
statistics was included in Hungarian schools. Varga’s idea was signified by a symbiosis between 
statistics and probability and a belief that teaching should begin as early as possible: the topics should 
be introduced in parallel, shape notions spirally, and strengthen the connections between them (Varga, 
1972). The first step was experimental: active learning and learning-by-doing that included experiments, 
hands on activities and calculations, and drawing conclusions, with students working as independently 
as possible. Generalised and abstract issues resumed in later phases according to the developmental level 
of students’ thinking. More details about Varga’s approach can be found in Varga (1983) and Borovcnik 
(2020). This reform of 1978 included not only arithmetic, algebraic, and topological (geometric) 
structures but also probabilistic and statistical structures. Varga’s approach of guided discovery and his 
holistic ideas about teaching were a great challenge to the teachers. As a result, many teachers (and 
parents) rejected his curricula. Teachers at the time were neither well prepared nor well supported to 
form the backbone of the curricular reform, though there was a broad group of teachers that tried to 
realise his ideas. The reform failed, and only a few elements remained in their original form. Yet, Tibor 
Nemetz was convinced that Varga’s ideas in the field of stochastics should be continued in secondary 
schools. He worked on further reform that resumed elements of the original plan. Nemetz used many 
key ideas from Varga such as the central role of playing for learning (Varga 1970), the spiral shaping 
and reshaping of concepts, and the tight connection between probability and statistics. At that time, only 
simple calculators were used in schools. Nemetz introduced many experiments, in which the students 
had to estimate probabilities. The experiments had to be designed, performed, and analysed so that 
students got answers if they carefully followed steps. This type of task is highly suitable for introducing 
the law of large numbers in an experimental way and provides a good example for comparing statistical 
and classical probabilities with each other. Nemetz collected 13+1 experiments for students to complete 
in class; the results of students’ realisation of the experiments were evaluated and described. This was 
organised in the form of a competition, and the winner was rewarded. Among these experiments were 
some that could be understood by combinatorial methods, whereas others required statistical methods 
(Nemetz, 1985).  

Consider two concrete examples from Nemetz in which students must bet on one of three 
possible outcomes A, B, or C. In the first task, one can use a combinatorial model, but the second task is 
genuinely statistical; the classical notion does not help to obtain a good choice. (a) Toss five regular dice 
at the same time. The outcome is the sum, S, of the numbers that appear on top after the dice land. What 
is the most probable event? A: S ≤ 9; B: 10 ≤ S ≤ 17; C: S > 17. (b) Open a minimum 200-page book to 
a random page and choose the 10th word from the right side! The outcome is the number, N, of letters in 
the word. What is the most frequent event? A: N ≤ 3; B: N = 4, 5, or 6; C: N ≥ 7. 
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We are designing curriculum materials that build on the rich work from Varga and Nemetz. Our 
research focuses on whether it is possible to use a parallel introduction of classical and Bayesian 
inference in high school and how we can prepare teachers to teach such an approach. 

 
THEORETICAL BACKGROUND OF THE PLANNED REFORM 
Preliminaries to the Research Question: Parallel Teaching Classical and Bayesian Ways of Inference 

Vancsó started his research on inference with a new concept of teaching Bayesian and classical 
inference in parallel in high schools and in teacher training in the early 2000’s. He connected to the 
school experiments of Riemer (1991) and the work of Wickmann (2001) on Bayesian methods and his 
critique of the significance test. See also Borovcnik et al. (2001) about the forerunners of such ideas. 
The Bayesian way was introduced by conditional probabilities using real-life problems such as medical 
tests. Doubletree diagrams with counts were used to represent the problems and were included in a new 
textbook (at that time) in Hungary as well (see Vancsó, 2010).  

As a reminder, in all classical statistics tests, there are two types of errors that one might easily 
recognise within the context of diagnosis. On one hand, someone may have the disease under scrutiny, 
but the diagnosis is false negative. On the other hand, a person does not have the specific disease, but 
the test is false positive. Both cases may occur, but the main goal is to isolate the people that have the 
disease (which is important if the disease is contagious). It seems to be impossible to keep both errors at 
a low level. Consider that the real goal is to keep the first type of error at a low level of 1% (or less). In 
this context, we see different probability notions at work. We use statistical probability for different 
failures of the test, subjective probability to estimate the size of the diseased (infected) group (or to 
analyse the individual case of the tested person), and classical (Laplacian) probability to answer the 
question. The answer is that the tested person in fact has the disease (is infected) if the person has a 
positive test—formally P(infected | +Test). From a mathematical point of view, we consider all three 
meanings as probability because they fulfil Kolmogorov’s axioms. Vancsó (2009) includes a summary 
of the above-mentioned “parallel-teaching research” and an analysis of the reactions of the future 
teachers. They understood classical inference better after studying Bayesian inference.  
• “I understood the method of confidence intervals first after I had become more familiar with the 

Bayesian region of highest density.” 
• “I really like the Bayesian method because I saw for the first time why the people have different 

opinions in many cases. Because the partners have different prior distributions.”  
These statements may convince the reader that a war between classical and Bayesian statisticians, as 
expressed in several articles in the Teacher Corner (see, e.g., Berry, 1997), is futile. However, the 
didactical community should seek viable ways to teach both theories in parallel; Migon and Gamerman 
(1999) provide an early exemplar of such a parallel approach at university level. 

A newer idea is to introduce problem sequences where these three different probability roots are 
set in a parallel discourse (Varga &Vancsó, 2021). Different games of chance have played a key role in 
the emergence of probability before the theory was established. For example, Rényi (1972) wrote Letters 
on Probability with an imaginary exchange between Pascal and Fermat. Later in the 1930, de Finetti 
(1937) developed an axiomatic theory to justify subjective probabilities as playing a role in bets on 
football matches. Because of its popularity, we have chosen betting as starting point for our series of 
problems. See Vancsó and Varga (2020) for the structure of the tasks, including the probability aspects. 
We develop probability and statistics simultaneously using the concept pairs of relative frequencies and 
probability and mean and expected value. In both pairs, the law of large numbers, which goes back to 
Bernoulli (1712), connects the pairs to a complementary total. Another reason is that all different 
meanings for the probability notion in mathematics are equally important. Consequently, shaping an 
understanding of probability should use all roots. Expected value—a further central notion—relates to 
expected win, which is also resumed in our problem of betting.  

Finally, modelling—a key in mathematics education—is also included in the design of our 
teaching material. De Finetti (1937, 1974) was the first to introduce subjective probability in a formal 
way. Carranza and Kuzniak (2008) advocate a simultaneous use of frequentist and Bayesian probability. 
They wrote, “Since the end of the 17th century, the ‘taming of chance’ (Hacking, 1990) has been 
following two paths: Frequentist and Bayesian” (p. 1); “there is a failure to differentiate between the two 
interpretations of probability, which are spontaneously combined in statistical situations where they are 
applied simultaneously” (p. 1). We also use a third concept, the classical (Laplacian) probability in 
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modelling sports events by games of chance. All these sources lead us to introduce the Bayesian method 
in parallel with classical inference. The results of the first school experiment 2019–2020 were reported 
in Borovcnik, Fejes-Tóth, Jánvári, and Vancsó (2020) and are summarised in Vancsó, Borovcnik, and 
Fejes-Tóth (2021). Five teachers participated in the teaching experiment. Three hours was not enough 
time to communicate the ideas, and teachers could only focus on the classical way. Our research group 
will elaborate a longer preparation course for teachers to experiment this new way in schools where 
mathematics is taught at a higher level than usual (5–7 lessons per week). Higher level is similar to A 
level; it was introduced to replace the university entrance exam for such students who study further 
mathematics at university level. The main goal is to prepare new requirements in inferential statistics 
for the final exam for higher-level students before a final decision about it in 2025. Our arguments in 
favour of the parallel concept originate from long-term research.  

 
Reasons Behind the Planned Concept of Parallel Teaching 

In the following, we summarise the strengths of this approach. Classical notions of probability 
based on the notion of equally likely outcomes do not provide a foundation for later work in probability 
when events are not equally likely. Nemetz used such experimental tasks where the classical notion fails. 
Although the frequency approach to teaching probability is helpful in situations where students can 
perform random experiments, there are conceptual difficulties in distinguishing between the observed 
relative frequency and the actual probability of an outcome, which relates to an infinite sequence of 
experiments. This approach is accessible to less able children because it is based on the comparison of 
likelihoods rather than on the specification of fractions. Gigerenzer comes to a similar conclusion and 
advocates using counts instead of fractions. Hawkins and Kapadia (1984) favour the Bayesian way 
because subjective probability is “closer to the intuitions that [the students] try to apply in formal 
probability situations”; a focus on frequentist or classical notions “may well conflict with the children’s 
expectations and intuitions” (p. 372) so that the three approaches should be blended. Albert (2002) 
provides arguments in favour of Bayes methods: Bayesian thinking is more intuitive than the frequentist 
probability viewpoint and reflects common-sense thinking about uncertainty that students have before 
the statistics class. Students have dealt with uncertainty and use words such as “likely,” “possible,” 
“rare,” and “always” to reflect different degrees of uncertainty. Subjective probability is a way of 
assigning numbers to these different degrees of uncertainty using a scale from 0 to 1. Beliefs of a person 
can change as one obtains new information. As one obtains new information or data, a person’s 
subjective probability can change. Bayes’ rule is a recipe for determining how the (conditional) 
probabilities change in light of new evidence.  

The Bayesian paradigm reflects learning, where one has initial beliefs about some issue; an 
experiment provides data; and the new beliefs blend previous opinions with information obtained in the 
experiment (Berry, 1997). In an estimation problem, one typically wants to be confident that a computed 
interval estimate contains the parameter of interest. In a testing problem, one is interested in the 
probability that a particular hypothesis is true. Yet, in the frequentist viewpoint towards inference, one 
is confident only in the performance of the estimate or hypothesis test in repeated sampling. This is 
useful in situations where one is repeatedly faced with an identical situation and performs a large number 
of 95% confidence intervals or hypothesis tests of level 0.05, but that does not help the applied 
statistician who is interested in making a one-off inference based on a single dataset. In contrast, 
Bayesian statements are conditional on the observed data. Because parameters are viewed as random 
from a Bayesian perspective, it makes sense to say that, for example, the interval (0.04, 0.54) covers an 
unknown proportion p with a certain probability. Likewise, one may talk about the probability that the 
null hypothesis applies after one sees the data. Students and even scientists make the incorrect statement 
that a proportion p falls into a realised 95% confidence interval with probability 0.95 (Gigerenzer, 1993, 
Vancsó, 2009); from a frequentist perspective, the probability is either 0 or 1. Either p is in the interval 
or not. 

Borovcnik and Kapadia (2015) differentiated four key methods for inference, which differ 
according to the type of probability (frequentist or subjectivist) and the general perception of scientific 
truth (hypothesis, unknown statements, data as central focus of evidence): (a) Bayesian inference (BI); 
(b) decision-theory (DT); (c) classical inference (Neyman-Pearson; Fisher); and (d) resampling for 
informal inference (II). The crucial point is only between BI and non-BI. Our starting point is the parallel 
introduction. BI involves an interpretation of probability as a frequentist (FQT) or as a subjectivist (SJT) 
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concept (SJT relates to the preference system of a person). Unfortunately, the key concepts to describe 
the properties of classical statistics are commonly misunderstood (not only by students) as probabilities 
for hypotheses: (a) the coverage of confidence intervals is linked to the single confidence interval even 
though it is a property of two random variables covering the unknown parameter; and (b) the type-I error 
of a test, or the Fisher p value are probabilities for (future) observations; yet, they are misperceived as 
probability that the null hypothesis is “true” given the data.  

 
Our Planned Work 

The curricular reform for grades 11–12 must be completed by 2025. Until then, curricular 
changes and requirements for the final exam must be elaborated in detail. Statistical inference is planned 
for the last two years of high school (grades 11 and 12, age 16–19). In the experiment, we will use three 
different versions: A is normal, 3+2 (extra) lessons; B is high-level students, 5–6 lessons per week; and 
C is special classes, 7–8 lessons per week. We plan to work cyclically. The first ideas will be tested in 
school experiments with specially prepared teachers. The duration of the experiments is 6, 8–10, and 
12–14 experimental lessons for A, B, and C, respectively. Observations during pilot teaching and impact 
on students and teachers will be analysed. Results from analyses will result in modifying ideas for a new 
experimental teaching phase to be prepared. Two or three such cycles will provide enough expertise to 
formulate the planned curricular changes and new requirements. 

 
SOME RESULTS OF THE PILOT EXPERIMENT  

We prepared teachers to teach the experimental material for four lessons (45 minutes). For the 
description of the experiment, see Fejes-Tóth (2020). One conclusion was that teachers taught only the 
“chi-squared test” and classical inference because they needed more support for Bayesian methods. With 
respect to other inferential methods, Fejes-Tóth reported positive reactions from both students and 
involved teachers. We used Excel in these lessons; however, to fill the gap with Bayesian methods, we 
plan to use Cogstat (www.cogstat.org), which was developed by the cognitive psychologist Krajcsi with 
a focus on algorithmic thinking (Krajcsi et al., 2021). Because Cogstat is designed for university 
psychology students, we plan to adapt, simplify, and extend the software so that high-school students 
can use it. CogStat is built to choose analyses automatically and to provide optimised graphical support 
for enhancing methods—features that help both students and teachers to focus on conceptual and 
practical understanding of statistics rather than the technical details of the software. It is appropriate for 
students who use statistics without deeper mathematical background.  

 
CONCLUSION 

Before our next planned experiment, we will develop detailed preparatory materials for use with 
the experimental teachers to develop deeper understanding of both classical and the Bayesian methods. 
We learned from our long-term seminars with future teachers that parallel teaching can help to develop 
understanding of inference concepts. While developing the tasks, we consider that teachers and students 
are familiar with binomial and hypergeometric distributions, so we focus on tasks that can be solved 
using these distributions. One example that could also be analysed in a Bayesian way is: An individual 
suspects that the probability of rolling a six with a die (in a casino) is greater than 1/6. We test the die 
and roll it 100 times to confirm or reject our assumption. Formulate the problem by stating a null and an 
alternative hypothesis. Calculate the critical range for a 0.05 (0.01) significance level. How would you 
decide if the number six comes up 10, 20, or 30 times out of 100 rolls? This question can be generalised 
later because the die can also be analysed with the chi-squared test for the distribution of all outcomes 
as we had done in the pilot experiment.  

Modelling plays a key role in our introduction to inferential statistics, similarly to the way we 
treat different notions of probability in teaching (see the loaded-dice experiment in Fejes-Tóth, 2020). 
The notion of probability must stand in the centre of didactical interventions, including its historic roots. 
For the foundation of a Bayesian view of inferential statistics, we must necessarily use conditional 
probabilities and Bayes theorem. We will deal with it within a context and pursue the attitude of 
modelling. From Borovcnik (2019a, 2019b), the medical diagnosis may be seen as a context for 
introducing decision-making and statistical tests, deeper discussion about these ideas, and the influence 
of different probability notions. We plan many opportunities for teacher reflection to enhance their 
understanding of foundations for our parallel concept of statistical and Bayesian inference. One 
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important aspect is to understand different interpretations of the results in classical and Bayesian cases. 
In all concrete situations, we can decide which approach is more useful depending on our information, 
preliminaries, and the consequences of our answer or decision. 

The current pandemic renewed an interest in understanding problems of diagnosis. What do 
diagnoses really imply and how do they connect to statistical and Bayesian inference? We agree with 
Borovcnik and Kapadia’s (2015) statement that, “following the classical significance tests of Fisher and 
the statistical tests by Neyman and Pearson, and decision theory, two more approaches are considered 
here using qualitative scientific argument: the Bayesian approach, which is linked to a contested 
conception of probability, …” (p. 1). Therefore, we integrate the Bayesian approach in our planned 
curriculum. In reaction to their summary, that “the prime reaction of the audience was that everything 
beyond a frequentist approach to probability and—especially a comparative programme for statistical 
inference—is suitable only for a minority, as most students will not understand the inherent concepts” 
(p. 1), we plan to address the conceptual issues carefully and prepare detailed materials for teachers. Our 
long-term research with future teachers supports our design of the material and how to prepare the 
teachers in special seminars before the next experimental teaching phase (Vancsó, 2009). The problems 
in teaching classical statistical methods are—to our analyses—due to the complexity of the concepts and 
the reduction to classical methods as classical and Bayesian methods have developed in a twin relation 
and cannot be fully understood when the concepts are separated. Barnett’s (1982) perspective about a 
comparative statistical inference supports our preference of using the various approaches and teaching 
them in parallel.  
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