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Artificial Intelligence (AI) has produced extremely efficient and effective classification and decision 
“machines” that learn from given data sets and generalize well to unknown data. These are mostly 
celebrated tools produced by methodologies of machine learning. There is a drawback, though, 
namely their lack of transparency in construction. Agents often ignore the construction steps and use 
them as black-box algorithms. We exhibit simple and transparent steps for creating robust and yet 
simple heuristics for classification based on the AI tool ARBOR. We also claim that these transparent 
classifiers compete well against powerful machines, especially when training sets are small. 
 
BACKGROUND 

Humans have had to make decisions under risk and uncertainty through all eras of their 
history. Nevertheless, the concept of risk is only about 800 years old and emerged as insurance 
became popular. It developed in parallel with the first official insurance contracts between shipping 
companies transporting goods and wares, and the craftsmen in Renaissance Italy who produced them 
(Scheller, 2017). The mathematical tools for risk analysis were developed during the late Renaissance 
and the Enlightenment, and the first analytical treatment of risks and so-called life contingencies was 
written by the British mathematician Augustus de Morgan (1838). Risk became an important area of 
application of probability theory and mathematical analysis, especially used in finance and 
economics. However, basic elements of this analysis have acquired relevance for communicating 
about problems in many basic domains of life such as health and the environment. As an example of 
the urgency for higher risk literacy among citizens, we cite the COVID-19 pandemic and the difficult 
discussions in the media about the benefits of tests and vaccines (see also Kaiser & Martignon, 2022). 
We claim that basic risk literacy should become an educational topic in school. This claim, and the 
suggestions on how this literacy may become part of the curriculum even in primary school, are 
reported at length by Martignon and Hoffrage (2019). Here we summarize the four basic components 
or levels of risk literacy as proposed by Martignon and Hoffrage. These are illustrated in Figure 1.  
 

 
 

Figure 1. The four levels of risk literacy 
 
Analyzing and modelling risks is possible today owing to the tools of probability and 

statistics for estimating the reliability of features of risky situations. These tools, developed during the 
Enlightenment, are used for estimating sensitivities and predictive values of features or tests, and 
symptoms. Yet, as is well known, Bayes’ theorem for one feature only is seldom enough for a 
classification that leads to a decision in a situation of high risk. Thus, more complex evidential 
reasoning under uncertainty becomes necessary. The pandemic has highlighted this necessity of 

ICOTS11 (2022) Invited Paper (DOI: 10.52041/iase.icots11.T6G3) Martignon, Engel, & Erickson

In  S. A. Peters, L. Zapata-Cardona, F. Bonafini, & A. Fan (Eds.), Bridging the Gap: Empowering & Educating
Today’s Learners in Statistics.  Proceedings of the 11th International Conference on Teaching Statistics (ICOTS11
2022), Rosario, Argentina. International Association for Statistical Education.  iase-web.org  ©2022 ISI/IASE



evidential reasoning under uncertainty. During the past two years, doctors and medical researchers 
around the world have had to analyze, combine, and model features/cues of tests of different kinds. 
Doctors and hospital assistants have had to assess the predictive value or diagnostic power of a 
combination of such features and decide accordingly, whether a patient with COVID-19 symptoms 
should be assigned to a hospital bed. Figure 2 on the left displays a fast and frugal decision tree that 
crystallized from statements from interviews with 17 doctors/hospital assistants in the city of 
Tübingen (conducted by the first author). 
 

 
 
Figure 2. On the left, the reader sees a fast and frugal tree used by doctors in Tübingen to assign a 

patient to a hospital or home bed during the first phase of COVID-19. The tree depicted on the 
right is a fast-and-frugal tree that helps emergency room doctors decide whether to send a patient 

to a regular nursing bed or to the coronary care unit (Green & Mehr, 1997).  
 

What matters in these cases is making a quick decision based on a quick diagnosis by means 
of a few cues. The predictive value for an oxygen saturation of less than 90 (or, in some cases, less 
than 85) for high COVID-19 risk has been assessed collectively based on shared knowledge and 
shared expertise. Low blood pressure is also considered predictive of imminent high risk. Here three 
features are combined for judgment.  

Assessing the reliability of one single cue is based on a straightforward application of Bayes’ 
theorem. If a physician has to establish whether a patient suffers from a disease, D, based on just one 
piece of evidence, which could be, for instance, a symptom or a test result, she will make use of three 
elements: 
1. The prior probability, or base rate, of the disease. If D+ denotes the actual presence of the 

disease, the base rate or prevalence of the disease in the population can be denoted by P(D+).  
2. The sensitivity, or true positive rate of the evidence. If the piece of evidence is a test T, with a 

positive result denoted by T+, then the sensitivity, or probability of a positive test if the patient 
has the disease, is denoted by 𝑃(𝑇 + |𝐷+). 

3. The specificity, or true negative rate of the evidence. If a negative result of the test is denoted by 
T- and absence of the disease is denoted by D-, then the specificity or probability of a negative 
result if the patient does not have the disease is denoted by 𝑃(𝑇 − |𝐷−). Assume also, that the 
doctor knows the sensitivity of the test, 𝑃(𝑇 + |𝐷+), and its specificity, P(T − |D − ).   

Assuming that the doctor knows the base rate, sensitivity, and specificity, the probability that 
the patient has the disease can be found by applying Bayes’ theorem:   

𝑃(𝐷 + |𝑇+) = 	
𝑃(𝐷 +)𝑃(𝑇 + |𝐷+)

𝑃(𝐷 +)𝑃(𝑇 + |𝐷 +) + 𝑃(𝐷 −)𝑃(𝑇 + |𝐷−)
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We will not go into the topic of the difficulties people, sometimes even doctors, have with 
this formula and the progress in fostering intuitions about this form of Bayesian reasoning by means 
of good representations. The paper by Kaiser and Martignon (2022), presented at ICOTS 11 in 
Rosario, offers a review of different representational approaches used successfully with students. The 
concern here, as mentioned above, is that just one feature, be it a test or a symptom or some other 
characteristic, is seldom enough for making crucial decisions in the health domain. The problem is 
then one of extending the approach to many cues. Bayesian networks, neural networks, Classification 
and Regression Trees (CART), random forests, and regression models are important methods for 
combining information from many cues. These models are all complex in construction, if not in 
execution. Their construction steps often include optimizing strategies of some kind, or the use of 
selection criteria, which require subtle calculations. They may be highly accurate when fitting known 
data and robust in generalization, but they often lack transparency, be it in construction or in 
execution.  

FAST AND FRUGAL TREES 
A fast-and-frugal tree is a tree-structured representation for making a classification on the 

basis of several cues. One begins, as in any classification tree, at the root and traces the tree until a 
leaf is reached that indicates the classification. A fast-and-frugal tree has a single exit at every level 
before the last one, where it has two. (See Figure 2 for examples.) The cues are ordered by means of 
simple ranking criteria. Fast-and-frugal trees are implemented step by step with a limited memory 
load and can be set up and executed by the unaided mind, requiring, at most, paper and pencil.  

A fast-and-frugal tree does not in general classify optimally. It rather “satisfices,” producing 
good enough solutions with reasonable cognitive effort. For generalizing, that is learning structure 
from training sets and extrapolating to test sets, fast-and-frugal trees have proven surprisingly robust. 
The predictive accuracy and the robustness of the fast-and-frugal tree has been amply demonstrated 
(e.g., Martignon & Laskey 2019; Woike et al., 2015). Fast-and-frugal trees have a simple 
characterization: 

Theorem: Given binary cues with values of 0 and 1, a fast and frugal tree based on these cues 
is characterized by the existence of a unique cue profile of 0’s and 1’s that operates as a 
splitting profile of the classification procedure. Any item with a profile lexicographically 
lower than the splitting profile will be classified in one category, while the remaining items 
will be placed in the other category. (For details, see Martignon et al., 2008.) 

                           
TREE CONSTRUCTION USING ARBOR 

ARBOR is an educational Artificial Intelligence (AI) tool for constructing trees based on 
basic measures of the features involved. More precisely, the only computations required for 
constructing these trees are those for obtaining predictive values and sensitivities out of the nodes in 
the natural frequency trees. These are paper and pencil calculations, yet they have to be performed 
without errors and quickly.  

Basically, ARBOR invites the user to play around with features, placing them sequentially, 
one after the other. At each step ARBOR emits precisely those measures that are relevant for the 
user’s choice of an adequate tree. ARBOR is found easily in the third authors’ large webpage 
composed of a series of different plugins for the Common Online Data Analysis Platform (CODAP) 
at https://codap.xyz. CODAP is a flexible, free, open-source educational data analysis platform. By 
opening the webpage and scrolling down to the section for “plugins and data with trees,” the reader 
has access to more than one plugin for tree construction based on ARBOR. A direct link is 
https://codap.xyz/plugins/arbor/.  

Here we present instructions and some explanations about using the CODAP ARBOR plugin 
to create classification trees using the dataset about heart attacks found in Green and Mehr (1997); 
this data set and the corresponding tree construction is also found under “plugins and data with trees.” 
For brevity, we do not give instructions on how to use CODAP; if the user is new to CODAP, and 
wants to know more, she can find help at https://codap.concord.org or by using the help button in the 
upper right of the CODAP window.  
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When the user clicks the link at MI tree, the browser will load CODAP and a saved 
document. He will see a rectangular area labeled diagnostic tree; a table of data labeled 
MIGreenMehr, and another currently empty data table called Classification Tree Records. There is 
also a “minimized” graph that the user can experiment with, but we will not refer to it in this 
explanation.  

The MIGreenMehr data table has information for about 89 patients, each with four attributes. 
• MI: did the patient have a heart attack? 
• Pain: did the patient complain of chest pain? 
• STelev: is the electrocardiogram (ECG) ST segment elevated? 
• oneOf: did the patient have any of a set of four other symptoms? 

The idea is to use these data as a training sample to create a classification tree to predict, 
given pain, STelev, and oneOf, who will have a heart attack (myocardial infarction, MI). That is, the 
user will assign MI as the outcome variable, and the other three will be predictors.  

The simplest possible tree is easily set up. It has a single node, which is to be labeled as “yes” 
to indicate that we predict that all of the patients will have an MI. Below the tree, the user can see 
how well the tree performs: there are 15 “true positives” (TP) and 74 “false positives” (FP). What 
does this mean?  This means that all 15 of the heart-attack victims were identified as at risk for heart 
attack. But this also means that all 74 of the other patients were also identified as at risk. In a 
diagnostic setting, the user will have deployed costly resources on patients that might not need it.  

The typical measures of these two competing outcomes are: 
• Sensitivity (sens): the proportion of “positive” cases that we identify as positive. For this simple 

tree, the sensitivity is 1.00, the best possible value. 
• Positive predictive value (ppv): the fraction of all positive diagnoses that are in fact positive. For 

our tree, the ppv is 15 out of 89, or about 0.17. 
The user can now begin by taking each of the features or predictors individually. One 

possibility is to start with the predictor pain. Below are the instructions for the user. 
• Drag the blue pain label from below the tree and drop it on the single node. If nothing happens, 

try again! The tree will update to produce something like the left-hand illustration in Figure 3. 
• The gray circles are our diagnoses for each value of pain. Click on them to change them; identify 

pain = “yes” with a positive diagnosis and “no” with a negative diagnosis, which only makes 
sense. The tree should now look like the right-hand illustration in Figure 3. 

• Below the tree, click the button labeled Emit Data. A row of data will appear in the Classification 
Tree Records table.  

 

 
 

Figure 3. The tree for one feature, namely “Pain?” 
 

The user should then take a moment to understand the tree display. The “yes” box, for 
example, tells us that 50 patients experienced chest pain, and 12 out of those 50 (or 24%) got heart 
attacks. We identified them as being at risk (the green yes (+) label), a “positive” diagnosis. In the 
other branch, out of the 39 people we diagnosed as not at risk, three got heart attacks anyway.  

How well does this tree perform? According to our two measures, that 24% is, by definition, 
the positive predictive value, ppv, an improvement over the “null” tree from before. But the 
sensitivity (sens) is now 12 out of 15, or 0.80, a step down from our earlier, perfect score. 
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In the Classification Tree Records table, CODAP has calculated values for ppv and sens. The 
table also records other metrics for the tree, such as the base rate (base), the number of true positives 
(TP), and the depth of the tree. “Hover” over any column heading to see its definition.  

We can do the same for the other two predictors, STelev and oneOf. Here are the instructions.  
• Just drag the corresponding label from the area below the tree and drop it in the “root” node. The 

new variable will replace pain.  
• Specify, for each “leaf” node—the gray circles—which diagnosis corresponds to that new node. 

(Of course, a “yes” value for the symptom should give a “yes” value for the diagnosis.) 
• Click Emit Data again to record the performance of the tree in the second table.  
• Do that for each of the two additional variables. 
• Now it is time to “grow the tree.” The user is not limited to a single cue; after adding one 

variable, he can drag a second variable to any node in the tree to expand it. But which variable 
should we start with? 

In this scheme for making a tree, we want to choose the “best” variable for our first 
branching.  The ppv measure, i.e., can be used to determine the best one. In that case, STelev is the 
best, with a ppv of 0.39. Pain is next, followed by oneOf. The instructions now can be: 
• Restore the tree to the state where there is one branching, using STelev.  
• Now drop pain onto the “no” branch of the tree, and assign the leaves. We now have a tree like 

the left-hand illustration in Figure 4.  
• Next, drop oneOf onto the node corresponding to STelev = no and pain = yes. When you assign 

diagnoses to the leaves, you get the tree on the right in Figure 4. 
• Finally, click Emit Data to record the performance of this tree. You’ll see that the tree’s ppv is 

0.30 and its sensitivity is 1.00. 
 

 
 

Figure 4. The left tree depicts two cues, while the right tree was grown by means of a third cue 
 

This procedure completes our tree. The process a doctor might use now to proceed could look 
like this:  
• The first question is whether the patient has an elevated ST segment on the ECG. If so, we send 

the patient to the cardiac care unit.  
• If not, we ask if the patient has chest pain as a main symptom. If they have NO chest pain, the 

patient does not get special treatment; after all, none of the patients in that category—normal ST 
segment, no chest pain—got heart attacks.  

• However, if that patient does have chest pain, we ask whether they have one of the other four 
symptoms. If they do, they go to cardiac care. If not, they get no special treatment.  

The overall performance of the tree is quite good, with a positive predictive value of 0.30, 
that is, 30% of our cardiac care patients might get heart attacks. In addition, our sensitivity is perfect: 
none of the patients we are treating normally got the MI. In effect, we traded some ppv in order to 
“catch” the two heart attacks among patients with normal ST segments.  

Observe that if one clicks on a row in the Classification Tree Records table, the tree will 
transform into the tree corresponding to the row. Therefore, one does not have to remember which 
row is which or reconstruct a complex tree. If one has emitted data, it is automatically saved. 
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Suppose one wants to use specificity as a construction criterion. Is this possible? The answer 
is affirmative: one can generate a new column in the second table and give it a formula. One can thus 
create any measure one considers relevant.  

The short set of instructions is specific to these data, but the tree tool is quite flexible. There 
is a help tab in the plugin, with many more instructions. Fast and frugal trees can be constructed, for 
instance, by choosing at each step the cue with highest overall predictive value, or by alternating 
between positive and negative predictive value (Martignon et al., 2008). By design the system 
presents the simplest possible tree set up. It has a single node, and it has been labeled “yes,” 
indicating the prediction that all of the patients will have an MI. Below the tree, it is possible to see 
how well the tree performs: there are 15 “true positives” (TP) and 74 “false positives” (FP). This is a 
fundamental feature of the construction.  

First pilot studies with students at a recent Summer Institute organized by the university of 
Milano in Como, Italy, have revealed that the instructions can be easily followed and implemented. 
More studies are planned.  

 
CONCLUSIONS 

Standardized classification methods have gained importance in the biomedical diagnostic 
field. Lötsch, Kringel, and Ultsch (2022) have amply described their use for the support of medical 
diagnosis. One problematic resulting effect, on which these authors comment extensively, has been 
that the traditional doctor–patient relationship based on trust built through the years is giving place to 
a less transparent interaction, in which the doctor communicates diagnostic results obtained by such 
AI algorithms. Fast-and-Frugal trees, which we have illustrated here, are listed also by the authors as 
a transparent, simple alternative.  

They are fast and frugal but, as has also been shown by means of comparison studies (Woike 
et al., 2017), they are robust in generalization and do not have to trade accuracy for simplicity.  

The intention of this paper is educational and concerned with risk literacy: when more than 
one feature is necessary for judgments and decisions under risk, the simple trees described here 
become handy and easily grasped.  
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