
COMBINATORIAL THINKING AS KEY FOR INTRODUCING HYPOTHESIS TESTING—
EVALUATION OF THE PLANNED SECONDARY-SCHOOL REFORM IN HUNGARY 

 
Péter Fejes Tóth1, Ödön Vancsó2, and Manfred Borovcnik3 

1 Hungarian University of Agriculture and Life Sciences, Department Applied Statistics, Budapest 
2 Eötvös-Lóránd University, Centre for Didactics of Mathematics, Budapest 

3 University of Klagenfurt, Institute of Statistics, Klagenfurt 
fejes.toth.peter@uni-mate.hu 

 
We developed an educational programme to prepare a curricular reform in Hungary. In the framework 
of this project, we tested and evaluated a new curriculum design relying on combinatorial and 
probabilistic knowledge and skills. As opposed to inferential statistics, which is not part of secondary 
education, combinatorial thinking has a rich tradition in secondary education. The idea was to extend 
combinatorially introduced probability to a wider meaning of general frequencies by using probability 
to evaluate the credibility of hypotheses. The materials proved to be interesting, motivating, and 
understandable. Based on pre- and post-tests, students’ probabilistic knowledge improved significantly. 
It is worth noting that our approach also intensified their understanding about probability apart from 
the targeted content of hypothesis testing. 

 
INTRODUCTION 

Statistics education in Hungarian secondary schools is limited to descriptive statistics. 
However, there are efforts under way by a research group from the Hungarian Academy of Sciences to 
change the status quo. Internationally, a rich body of research literature is available regarding the 
methods, practice, and experiences of including inferential statistics in secondary curricula (Borovcnik, 
2017; Garfield et al., 2008, 2012; Rossman & Chance, 1999). One way to expand the curriculum is by 
introducing statistical hypothesis testing, as has happened in numerous cases (starting from, e.g., Bunt, 
1967). We built curriculum materials by relying heavily on the fact that, traditionally, there is a well-
established combinatorial and probability tradition within the curriculum in Hungary. We conducted an 
experiment with one class (Fejes Tóth, 2020) and used the preliminary results to refine and compile a 
six-lesson curriculum. The curriculum was delivered by trained teachers in an experimental setting in 
four secondary school classes (grades 10–12) during the 2019–2020 and 2020–2021 school years (with 
some delays due to the pandemic). In this paper, we present the results of the experimental teaching 
phase, from the perspective of how already acquired literacy in probability can support the 
understanding of hypothesis testing and conversely, how mastering this statistical tool affects the 
understanding of probability. We introduce the intended curriculum, discuss teachers’ and students’ 
evaluations of the curriculum (regarding its usefulness and suitability), and provide an evaluation of its 
educational impact in terms of knowledge and problem-solving skills, with a focus on the effects on 
teaching probability observed in the experimental classes. 

 
COMPILED CURRICULUM 

In designing the curriculum, we heavily built on the approach of Tamás Varga (Varga, 1970, 
1972, 1983) by focussing on research-based learning and learning-by-doing. We included several 
experiments and “hands on activities,” and we tried to encourage students to perform calculations and 
draw conclusions as independently as possible. During the course, students started solving problems 
using prior knowledge with combinatorial calculations, and they were gradually introduced to applying 
their calculations to informally evaluate statistical hypotheses, which served to prepare them for 
hypothesis tests. We assessed hypotheses in terms of goodness of fit using the chi-squared test. We also 
pointed out that hypotheses may differ in nature and require different methods, including non-statistical 
methods, to test them. We chose three experiments as tasks for lessons that should enable students to 
understand the essence of probability theory and to shape an adequate understanding of hypothesis 
testing based on probability. The first two tasks can be solved with the probability knowledge students 
previously acquired. The formulation of the research question draws students’ attention to hypothesis 
testing. The three experimental problems are discussed in more detail below. In all three experiments, 
students are guided through the entire process from formulating a hypothesis, conducting the 
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experiment, analysing the data, and drawing conclusions about the hypothesis. Type I and Type II errors 
are also introduced, emphasising the importance of choosing the level of significance. 

 
The Lady-Tasting-Tea Experiment 

Students work in pairs. One student fills four glasses with mineral water and four glasses with 
tap water. The other must determine which glasses are filled with tap water, knowing that out of the 
eight glasses, four contain mineral water and four contain tap water. The first student notes the number 
of correctly classified glasses. The two students then swap roles. Questions asked include: How can we 
decide whether the subject is actually able to identify the different types of water? Alternatively, 
someone recognised all four glasses of tap water. Can we say that the person recognises tap water? 
Overall, students have to decide, based on their experiment (tasting glasses of tap water or mineral 
water), whether they think the test person is able to distinguish between the two types based on taste. 

 
Is the Coin Fair or Loaded? 

Several tasks were given to students to decide whether a coin is regular or loaded for a specific 
event such as the outcome of 63 Heads and 37 Tails in 100 tosses of the coin, or the outcome of 58 
Heads and 42 Tails. Students investigated a variety of cases using a prepared Excel spreadsheet with 
results for many tosses, few tosses, fake coins, etc. Although the calculations and simulations referred 
to the probability of some event, the task led students in the direction of informal tests of a statistical 
hypothesis. Students could not know whether the coin they had in their hands was regular or loaded. 
The simulations in Excel also provide an opportunity for students to investigate their rates of wrong 
decisions, either rejecting or not rejecting the hypothesis of a regular coin. During the experiment, 
students not only analyse their own experimental results, but are also given different distributions as 
examples to see how the assessment changes depending on sample size and distribution.  
 
Is the Die Fair or Loaded? 
 Several tasks were given to students to decide whether a die is fair or loaded. 
• Task 1. Each student uses a spreadsheet to simulate 60 rolls of a fair die. Students draw a bar chart 

based on the frequencies and make a subjective decision about whether the die is fair or loaded at 
a glance. They then calculate the chi-squared value to make a decision. 

• Task 2. Each student simulates 60 rolls of a slightly loaded die. Again, the students first make a 
decision by looking at the graph and then applying the chi-squared test. Anyone who concludes that 
the die is fair made a Type-II error. 

• Task 3. Repeat the experiment with more rolls (60, 600, and 6000 rolls). Students should notice 
that the Type-II error gets smaller with increased numbers of rolls. Then students repeat the 
experiment with a heavily loaded die and notice that the frequency of the Type-II error again 
decreases. 

• Task 4. Students are each given a loaded or regular die, but that fact is unknown to them. Their task 
is to find out whether their die is loaded or not based on measurements and calculations. 

For each task, students have to decide, based on their experiment (rolling a die several times, running 
simulations for series of 60, 600, and 6000 rolls) if the die is fair or loaded. In both cases (simulating 
or rolling a die), they work with fair and loaded dice (e.g., physical dice created with a 3D printer). 
They record their results numerically and in graphs and make decisions based on the visual appearance 
of the graphs and the application of chi-squared tests. The parameters that influence the probability of 
a Type-II error are also discussed. 
 
The Collection of Tasks 

The tea and coin problems can be solved using combinatorial probability calculations and using 
knowledge about sampling with and without replacement. The die problems can be solved by a best-fit 
test (chi-squared test). The coin problem can also be solved using a chi-squared test and is a good task 
to use to present a new method in addition to applying the binomial distribution that is already well 
known to students. Due to limitations both in mathematical knowledge and time, we cannot present the 
mathematical background of the chi-squared test to students, however, we can show that by using 
combinatorial probability calculations or using the chi-squared test, we usually come to the same 
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conclusion. For all three tasks, the students can perform physical experiments and amend them later 
using computer simulations, where it is also possible to base calculations on a larger sample size. 

The tea and coin experiments are essential for illustrating our approach, which is based on the 
idea of building on students’ prior knowledge of combinatorics by making a close connection to the 
new topic of statistical testing (they are complete novices with statistical inference) and by 
reinterpreting simple probabilities calculated in a familiar combinatorial setting. The tea experiment is 
special because the inference question arises directly from the context. It is a close replica of the original 
experiment run by biologist Ronald Fisher (Fisher, 1935), who used eight cups of tea to find out (test) 
whether the “Lady” can recognise whether milk was added to tea or the other way around. The Lady 
knew there were four cups of both kinds. We have to use the hypergeometric distribution for calculating 
the probabilities of interest. The probability that the Lady identifies all four tea-first cups correctly if 
she merely guesses equals , i.e., the value of p cannot be lower than this value even 
if she identifies all four mugs correctly. If the Lady does not know the number of cups with milk added 
to the tea, we have to use the binomial distribution, and this value decreases to . 
Students would need to consider different options: eight cups or more, known or unknown number of 
cups with “tea first,” all guessed correctly or not. In different experimental settings, the possible cases 
are different, which would lead to a different evaluation of the evidence from the actual experiment to 
judge the hypothesis that the Lady has a special skill of recognising how the tea was prepared (see 
Fanshawe, 2021). The probability of classifying all cups correctly may vary from 0.00024 to 0.0143 
depending on whether eight or twelve cups are involved and whether the Lady is told the number of 
each preparation. Based on prior knowledge, students can easily calculate the solution probabilities by 
applying the binomial and hypergeometric distributions known from probability and can develop 
understandings of the essence of hypothesis testing from the way the questions are formulated. 

 
EVALUATION METHODS AND DATA 

The pilot study serves to answer our main research question: Are the suggested methods and 
problems appropriate to introduce the concepts of inferential statistics to high-school students for the 
very first time? The aim of the pilot course was to test the feasibility, acceptability, and effectiveness 
of the course design among students and teachers. Four teachers took part and delivered the material to 
64 students in their classes. We assessed students’ and teachers’ attitudes and perceptions regarding the 
design of the material and the lessons and assessed students’ understanding, i.e., the learning outcomes 
(see Vancsó et al., 2018). We designed the assessment scheme for the study using mixed methods and 
repeated data collection. Summative classroom assessment (Suurtamm et al., 2016) was applied in a 
pre-test–post-test design to assess the impact of the programme in terms of skills and competencies 
acquired. The pre-test was administered before the pilot course and consisted of basic combinatorial 
questions. The post-test, administered after six pilot lessons, consisted of similar basic combinatorial 
questions (see Table 1) and a task requiring the application of freshly acquired knowledge about 
statistical hypothesis testing. 

To assess feasibility and acceptability, students were asked to complete an anonymous 
questionnaire about their opinions and attitudes related to the material. The questions related to how 
well they understood the material, how interesting they found the lessons, and how useful they found 
what they had learned. Semi-structured interviews were conducted with the teachers and analysed in a 
narrative manner. The interview guide contained the questions listed in Table 2. In this paper, we 
present a segment of the evaluation phase that relates to probability education. 

 
RESULTS 
Pre- and Post-Test 

For the pre-test, we had several assessment goals. First, we wanted to measure students’ ability 
to decide whether a particular event in a specific setting is certain, possible, or impossible to happen. 
This task proved to be straightforward for the students: they had to make a decision regarding seven 
events, and the answers of the 59 students who completed the pre-test were 98.8% correct. Because we 
wanted to keep the pre- and the post-test as similar as possible, we asked similar questions on the post-
test and got similarly good results. Second, we also measured students’ combinatorial knowledge. 
Because we repeatedly used sampling with and without replacement in the new materials, we decided 

1/ 8 4 0.0143p C= »

81/ 2 0.0039p = »
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to measure how proficiently students can handle such problems before and after the experiments. The 
difference here was striking. For sampling without replacement, 35.6% of students solved the problem 
correctly on the pre-test, whereas 83.6% gave correct answers on the post-test. For sampling with 
replacement, the success rate increased from 10.3% to 60.0%. The rate of completely wrong answers 
went down from values of approximately 60% to values around 15% for both types of tasks. The results 
between pre- and post-test differ significantly, as shown in Table 3. 

 
Table 1. Questions in pre- and post-test 

 
Type of task Pre-test Post-test 
Sampling 
without 
replacement 

In an urn, there are 4 white and 11 non-
white (5 red and 6 blue) balls. Take 5 
balls without putting them back.  
 

What is the probability that exactly 5 of 
the 5 balls are white? 
What is the probability that exactly 3 of 
the 5 balls are white? 

There are 100 apples in a box, 15 of which 
have worms. We select 5 apples randomly 
without replacement. 
 

What is the probability that there is no apple 
with a worm among the 5 selected apples? 
What is the probability that there are two 
apples with worms among the 5 selected 
apples? 

Sampling 
with 
replacement 

Take out 5 balls with replacement (i.e., 
before you draw again, put the 
previously drawn ball back into the urn).  
 

How many different results can we get if 
the order still does not matter? What is 
the probability that exactly 5 of the 5 
balls are white? What is the probability 
that exactly 3 of the 5 balls are white? 

There are 100 apples in a box, 15 of which 
have worms. We select 5 apples randomly 
with replacement. 
 

What is the probability that there is no apple 
with a worm among the 5 selected apples? 
What is the probability that there are two 
apples with worms among the 5 selected 
apples? 

 
Table 2. Interview questions for teachers 

 
What inspired you to take part in the experiment? 
Have you received enough support from the teacher training?  
Was the used material or the teaching of it new to you? 
What did you like best or least about the curriculum and the experimental teaching?  
Would you like to teach this material again in the future? If so, what would you change about it?   
If not, why not? 
What do you think you can benefit from the practice you have gained?  
Has this experimental teaching influenced your relationship with the students? 
In your opinion, did the students enjoy the lessons?  
Have they succeeded in learning the new material? 
Is there anything you might wish to say, highlight, or share your experiences? 

 
Table 3. Results on pre and post-test for combinatorial problems  

 
 Sampling with replacement Sampling without replacement 
 Pre-test Post-test Pre-test Post-test 
 N % N % N % N % 

Completely wrong answer 36 62.1 9 16.3 38 64.4 7 12.7 
Partly correct answer 16 27.6 13 23.7 0 0 2 3.7 

Correct answer 6 10.3 33 60.0 21 35.6 46 83.6 
Sum 58 100.0 55 100.0 59 100.0 55 100.0 

 𝜒2 = 35.148, p-value = 2.3´10-8 𝜒2 = 31.82, p-value = 1.7´10-8 
Note: For sampling without replacement, the categories of Partly correct and Correct have been 
merged to provide a better approximation of the test statistic by a chi-squared distribution 
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On the pre-test, 17 of 59 students did not insert the binomial coefficient into the formula 
. On the post-test, this number reduced to seven. Though this was not a 

central part of the lessons, practice proved to have an impact in improving students’ proficiency—this 
formula occurs frequently both in the “tea/water” experiment and in the “coin” experiment. The 
repeated application of a previously learnt concept in a “technical” setting enhanced learning. 
Theoretical understanding and practical application (ability to determine necessary steps to achieve 
certain results) create mathematical knowledge that is strongly connected by interrelations, possibly in 
an iterative manner (Rittle-Johnson & Schneider, 2015). This also means that the time allotted for the 
statistics course is not a detriment to other topics but should be regarded as an opportunity to deepen 
students’ knowledge—different topics are not necessarily competing but can strengthen each other. 

 
Beliefs and Evaluation of Teachers 

The four teachers who participated in the experiment were fundamentally positive about the 
curriculum design and its content. One teacher noted, “the curriculum was interesting, especially 
because it was based on experiments carried out by students—in secondary schools this kind of hands-
on activity is a rare phenomenon.” A second teacher indicated, “even though hypothesis testing will not 
be part of the curriculum, I will definitely use the Lady-tasting tea experiment in my lessons on 
hypergeometric and binomial distributions.” 

These teachers recognised the curriculum as feasible both for them as teachers and for their 
students. The decision-making mechanism of hypothesis testing was well understood by everyone, as 
corroborated by students’ post-test results. During the course of teaching the lessons, the teachers’ 
experience was that students who had a better knowledge base in mathematics were more likely to have 
hard times digesting the concepts of a chi-squared test (used in the loaded-die experiment). 

It was more difficult for higher-performing students to accept the chi-squared-test method, 
which did not include a mathematical explanation. Actually, that bothered me too—as a 
teacher, I’m not used to not having answers. I understand that the underlying theory cannot be 
explained in a high school, yet it would be nice to provide a better, logical understanding. 

The sophisticated mathematical details behind chi-squared tests were not explained in detail, and 
students with minds wired more for abstract mathematical concepts and understanding might have 
lacked the mathematics behind why the test works the way it works. The first problem (Lady-tasting-
tea) was less of a problem for these students with stronger mathematical backgrounds (binomial and 
hypergeometric distribution), leaving them with no questions left open. In the case of students with a 
more moderate background in mathematics, the exact opposite was true. In the case of the chi-squared 
test, they were able to accept the method, mechanically complete calculations, and come to decisions 
without needing the mathematical background. While solving the tasks, these students found greater 
difficulty with using their (weaker) combinatorial knowledge and skills. In general, the teachers felt 
that they would like to use similar in-class experiments that can be solved based on combinatorial 
probability in the future, regardless of whether statistical hypothesis testing becomes part of the 
curriculum or not. They perceived these tasks to be predominantly of a probabilistic nature, with the 
question to answer or the answer itself stated in an unusual form. 

 
CONCLUSION 

Regarding the curriculum materials, it is obvious that preliminary knowledge in combinatorial 
probability and familiarity with combinatorial thinking makes the introduction of statistical hypothesis 
testing feasible. However, the six teaching units (45 minutes) were not enough for the curriculum to be 
realised, and we will address this in the next phase of our experimental class design. The results 
demonstrate that it is didactically helpful to base the introduction of a complex method for making 
decisions under uncertainty on combinatorial skills. We find evidence that an experimental-led learning 
method enhances the introduction of hypothesis testing. That means that students can learn how to 
evaluate hypotheses within a research-based environment. Class observations show that reliable 
mathematical tools can back the empirical approach even if the background is not fully clear to students. 
The approach has a positive impact on students’ skills related to their combinatorial and probabilistic 
thinking. Not only do combinatorial skills and a proper probabilistic understanding help to build 
appropriate conceptions of the procedure of hypothesis testing, the task of statistically evaluating a 

100( ) (1 )k kp x k nCk p p -= = -
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hypothesis supports an understanding of probability. An extension of a combinatorial meaning of 
probability to a frequentist probability and a kind of abstract risk index seems natural within such an 
approach. Teachers expressed their dedication to include the methods in their future teaching practice, 
regardless of whether statistical inference will become part of the curriculum. This opens further 
questions and possibilities in terms of how the introduction of more complex phenomena, building on 
already acquired knowledge, may deepen understanding of the “prerequisite” content. The present 
project demonstrated the feasibility of introducing statistical inference into the Hungarian curricula. 
The project got the cooperation of the teachers for the reform. The natural links between combinatorics 
and hypothesis testing will also improve the understanding of probability. 
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