
INTUITIVE INTRODUCTION TO THE IMPORTANT IDEAS OF INFERENCE 
 

Robin Lock1, Patti Frazer Lock1, Kari Lock Morgan2, Eric Lock2, and Dennis Lock3 
1St. Lawrence University, 2Duke University, and 3Iowa State University, USA 

rlock@stlawu.edu 
 
Concepts of statistical inference, such as margin of error when estimating a parameter and p-value 
when testing a hypothesis, are notoriously difficult for students to grasp. In traditional approaches, 
these ideas typically come as the culmination of a long development of prerequisite material on 
sampling distributions, formulas for standard errors, standard reference distributions, central limit 
theorems, and formulas for standardizing values. Simulation methods, such as bootstrap intervals 
and randomization tests, require minimal background knowledge and highlight the underlying 
logic of statistical inference, giving students an intuitive appreciation for the key ideas early in a 
course. But are such methods accessible and understandable to beginning students? We argue that 
advances in technology make this approach both feasible and desirable. So how does one go about 
modifying a course to incorporate these ideas? That question is the main focus of this paper. 
 
BACKGROUND 

George Cobb in his address to the first United States Conference On Teaching Statistics 
(USCOTS 2005) and subsequent lead paper in the first edition of TISE (Cobb 2007) challenged 
statistics educators to move away from reliance on inferential methods based on standard normal 
and t-distributions and embrace simulation-based randomization methods as a more authentic way 
to introduce the core ideas of statistical inference. Also, these methods are now part of new 
Common Core Standards for Mathematics in the United States. In a frequently quoted conclusion 
to his paper, Cobb states “Before computers, there was no alternative. Now, there is no excuse.” 

But many statistics teachers still had some “excuses”. Where could we find guidance on 
how to implement such an approach within an introductory curriculum? What about materials 
(textbooks, activities, sample assessments, etc.) to support these methods? Is there technology that 
is easily accessible and appropriate for use with beginning students? Should we use simulation 
methods exclusively or still include formula-based methods using traditional approximating 
distributions? How should simulation methods fit within a syllabus for an entire course?  

We address some of these questions below, addressing first What, then Why, then How.  
 

WHAT SIMULATION METHODS SHOULD WE TEACH?  
We broadly categorize inference questions in an introductory statistics course into two 

groups: estimation and testing. These two types of inference lead naturally to two general classes of 
simulation procedures: bootstrapping to estimate sampling errors and create confidence intervals, 
and randomization tests to measure strength of evidence and find p-values for significance tests.  

 
Bootstrap Distributions for Estimating Standard Error and Creating Confidence Intervals 

Suppose we have a sample statistic estimating a population parameter. We'd like to assess 
how accurate that statistic is likely to be for our sample size and population. Generating multiple 
samples from the population is generally not feasible, so instead we generate multiple bootstrap 
samples from the original sample. To generate one bootstrap sample we choose values with 
replacement from the original sample using the same sample size. We then compute a bootstrap 
statistic for that sample. Repeating this process for many (1000's) of bootstrap samples gives a 
bootstrap distribution, which we can use to measure the variability in the sample statistic.  

We show students two different ways to produce a confidence interval from a bootstrap 
distribution. The first uses the standard deviation of the bootstrap statistics to estimate the standard 
error (SE) of the statistic. Assuming that the bootstrap distribution is relatively symmetric and bell-
shaped, we create the interval using SEStatisticSample ⋅± 2 . The second method uses percentiles 
to cut off the extreme values in the tails to leave 95% (or whatever the desired confidence level 
might be) of the bootstrap statistics in the middle. The boundaries for this middle 95% give the 
confidence interval. (There are other methods for finding confidence intervals from a bootstrap 
distribution but we feel these are beyond the scope of an introductory course.) 
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We see advantages in both of these methods. The SEStatistic ⋅± 2  form of the interval 
helps students get ready for "formula"-based intervals, while the percentile interval method aids 
with visual understanding of what the confidence level means. For example, it is easy to see why a 
99% confidence interval should be wider than a 95% interval.  

Example: Figure 1 shows a bootstrap distribution of means (done in StatKey) based on a 
sample of prices (in $1,000's) for a brand of used car. The original sample has 25 cars with a mean 
price of 15.98 and standard deviation of 11.11. The percentile method interval (11.930 to 20.434) is 
shown on the bootstrap distribution below, while we use the standard deviation of the bootstrap 
statistics (2.174) to compute the interval on the right using the SEStatistic ⋅± 2  method.  

 

 
 

Figure 1. Bootstrap distribution and 95% CI for mean price of used cars via percentiles and SE 
 
Note that there is some disagreement between the two methods. Indeed every different set 

of 1000 bootstrap samples yields a slightly different interval estimate. That is something that 
students (and instructors) need to get used to when dealing with simulation methods. We are no 
longer able to expect an exact match to the "back-of-the-book" answer to a problem. We believe 
this is an advantage as it reminds students that there are rarely "exact" answers in statistics. For 
answers that vary less from simulation to simulation, simply generate more bootstrap samples.  

 
Randomization Distributions for Assessing Significance with a P-value  

We start with a set of (null and alternative) hypotheses, some sample data, and a statistic 
measuring some aspect of that sample data. The critical question of interest is how unusual would 
that sample statistic be if the null hypothesis were true. A straightforward way to approach this 
question (and thus estimate a p-value) is to generate lots of samples showing what is likely by 
random chance if the null hypothesis is true, and then compute the proportion of statistics from 
those randomization samples that are as extreme as the statistic from the original sample.  

Example: A study (Mednick et al., 2008) compared people’s ability to recall a list of words 
after a time period in which some of the subjects had caffeine and others had a short nap (with 
random assignment to the groups). We wish to test whether the mean number of words recalled (µ) 
is higher with sleep than with caffeine, i.e. H0: µs=µc vs Ha: µs>µc. The study randomly assigned 12 
subjects to each group, and the difference between the mean number of words recalled after sleep 
( sx ) and after caffeine ( cx ) was 0.325.1225.15 =−=− cs xx .  

How do we create the randomization samples in this situation? Since we want to know 
whether a difference as large as the observed sample difference is unlikely to occur by “random 
chance alone” and the randomness in collecting these data was due to the random assignment of 
subjects to the “sleep” and “caffeine” groups, we can generate new samples by randomly 
reassigning the 24 subjects to the two groups and assuming (under the null hypothesis of no 
difference in the treatments) that the number of words recalled would be the same.  
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Students can easily generate one or two randomization samples by hand with a physical 
simulation. Have them write the word counts from the original sample on 24 cards, shuffle the 
cards, and then deal them into two piles (one sleep, the other caffeine) of 12 values each. Finding 
the mean of each sample and computing the difference gives one value of a randomization statistic 
for this situation. In practice, we need thousands of such randomization samples to get a good 
estimate of the p-value, so we move quickly to technology.  

 

   
 

Figure 2. Randomization distribution for the difference in mean words recalled 
 
Figure 2 shows a randomization distribution of differences in means for 1000 random 

reassignments of sleep and caffeine labels to the 24 word recall values. Since this is an upper-tail 
alternative, we estimate the p-value by finding the proportion of these samples that give a 
difference as large (or larger) than the observed sample difference of 3.0. This gives our estimated 
p-value of 22/1000 = 0.022. Since this is quite small, we have fairly strong evidence that sleep is 
more beneficial than caffeine in this sort of memory task. Perhaps students should avoid caffeine 
fueled all-nighters before a big exam and get a good night’s rest instead! 

 
WHY ARE SIMULATION METHODS VALUABLE? 

Using bootstrap methods to construct confidence intervals helps students understand the 
general idea of a confidence interval in a relatively simple setting, and can be introduced very early 
in a course. The idea of cutting the tails off the distribution and keeping the middle is a powerful 
visual image for the students, and builds conceptual understanding without getting bogged down in 
formulas. The methods can easily be applied with no modifications to a wide variety of situations. 
Students can find a confidence interval for a slope or a standard deviation just as easily as for a 
mean or a proportion, since the method is exactly the same in each case. Bootstrap distributions can 
reinforce many of the key ideas of sampling distributions, such as variability in statistics.  

The process to find a p-value in a randomization distribution is also very visually 
compelling and directly reinforces the definition of a p-value. Students associate finding a p-value 
with looking at how extreme the sample data are, in a distribution that is clearly constructed to 
satisfy some null hypothesis. The fact that we “assume the null hypothesis is true” is an integral 
part of the process, as is the idea of seeing how likely data as extreme as the sample data are to 
occur by random chance. The process for finding the p-value is more intuitive and concrete than 
looking up a standardized value in a table for some theoretical approximating distribution.  

Our students are very visual learners, and many are not strong with mathematical formulas. 
They can see how an interval is capturing the middle 95% of values, or see how extreme the 
statistic is in a distribution showing what is likely if the null hypothesis is true. They can internalize 
that more extreme (and hence, smaller p-value) gives stronger evidence against the null hypothesis. 
We believe these methods make it easier for students to see the connections to the underlying 
concepts, while traditional formula-based methods often obfuscate those connections.  

 Sleep Caffeine 
subjects 12 12 
mean 15.25 12.25 
std. dev. 3.55 3.31 
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HOW SHOULD THESE METHODS BE IMPLEMENTED? 
 
Should Simulation and Distribution-based Methods Both Be Covered, and If So, Which First? 

Is it feasible, and desirable, to cover both simulation methods and traditional distribution-
based methods in a single introductory course? It is feasible, since our experience is that once 
students understand the concepts from the simulation methods, the distribution-based methods can 
be covered very quickly. Whether or not it is desirable to cover both depends on the goals of the 
course and the student audience. If both are covered, we think the answer to the question of which 
should come first is fairly obvious. The background material for students to use and understand 
simulation-based methods is pretty minimal. Malone et al.(2010) argue for resequencing topics in 
an introductory course to get to the main ideas of inference much earlier. This is quite feasible to 
do using intuitive simulation based approaches that require little, if any, background material.  

 
Should Intervals and Tests Both Be Covered, and If So, Which Should Come First? 

We believe both should be covered, but the order question is more challenging. A number 
of simulation-based curriculum projects, e.g., Tintle, et al. (in press) and Zieffler et al. (2013), start 
with randomization tests as the initial exposure to statistical inference. However, our project (Lock 
et al., 2013) leads off with bootstrapping to assess the accuracy of an estimator and construct a 
confidence interval for a parameter. Here are a few reasons for our decision to do intervals first: 
• Malone et al. (2010) point out advantages of matching the order of course topics to the order 

we follow in a typical data analysis. Thus we start with issues of data collection, sampling, and 
experimental design followed by standard numerical summaries and graphical displays. The 
question that naturally arises is "How accurate are those sample estimates?" This leads directly 
to the idea of a bootstrap as a way to assess the variability in a sample statistic.  

• The question of “How accurate is my statistic?” is relatively straightforward and easy for 
students to comprehend, especially as compared with “How extreme would my statistic be, if 
the null hypothesis were true?” 

• The bootstrap process is straightforward and can easily be applied to lots of different statistics. 
Just sample with replacement, compute the statistic of interest, and collect the results to form a 
bootstrap distribution. On the other hand, the methods used to create randomization samples 
can differ depending on the situation (See one-crank vs. two below). 
 

 Can We Explain Bootstrapping?  
To many introductory students (and some instructors) the idea of using a bootstrap 

distribution from a single sample to assess the variability of a sample statistic seems a bit magical – 
and perhaps even looks like cheating. How can we use just the sample itself to assess how accurate 
the sample statistic is likely to be? We have found the following analogy to be helpful in getting 
students (and instructors) to see what is going on with the bootstrap process.  

Think of a population as the crown of a large tree with the trunk representing a parameter, 
such as the mean being the balancing “center” of the population (See Figure 3). Imagine seeds 
dropped from this tree to represent statistics generated for a sampling distribution, using repeated 
samples from the population. Many seeds fall fairly near the trunk, but a few might drift farther 
away. The variability in the distances of those seeds (sample statistics) from the trunk (parameter) 
in this sampling distribution is a key quantity (standard error) that we need for inference.  

But in statistical practice, we can’t see this whole distribution of seeds or the trunk of the 
tree. We only have the information from a single sample, just one seed, to use to try to estimate 
where its tree might be. What can we do with just a single seed? The answer is obvious – grow a 
new tree! That’s essentially what we are doing in creating a bootstrap distribution. We use the 
information in the sample, assuming that the structure (DNA) is similar to the population it came 
from, to generate a reasonable model for that population and then create many new samples from 
this new population. By observing the behavior of those new seeds (bootstrap statistics), and how 
far they typically fall from the new trunk (the statistic for the original sample, which we know) we 
can estimate how far that original seed is likely to have fallen from the trunk of its tree. As Chris 
Wild put it in a recent plenary talk at USCOTS 2013 “We use the bootstrap errors that we CAN see 
to estimate the sampling errors that we CAN’T see.”  
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Figure 3: Motivation for the bootstrap process using trees dropping sample seeds 
 

One Crank Versus Two?  
John Holcomb asked a question regarding teaching randomization methods at ICOTS8 

(Holcomb et al., 2010) which has become known as the “one or two cranks” debate. When testing 
for a relationship between two variables a natural way to simulate new samples under a null 
hypothesis of no association is to randomly scramble values of one of the variables to break any 
association with the second variable. We’ll call this the reallocation crank and note that it is 
particularly appropriate for data obtained from an experiment that involved random assignment to 
treatment groups, like sleep and caffeine above. But suppose our data were obtained from random 
samples of sleepers and caffeine drinkers in a population. Another method for generating 
randomization samples would be to combine the data from both samples into one large group to 
represent the population, then get two samples with replacement from that combined sample (so 
both come from a “population” with the same mean) using the same sizes as the original sleep and 
caffeine samples. We’ll call this the resample crank.  

Should students see both of these randomization methods in an introductory course? Yes, 
although perhaps not in full detail. In some situations (such as a test for a single proportion), there 
is no feasible way to get randomization samples consistent with a null hypothesis through 
reallocation, thus we have to resample from a population that matches the null hypothesis. One of 
the nice features of randomization tests is that they allow us to make a clear connection between 
how randomness is used in generating the data and how it is used to simulate new samples to assess 
significance. A much harder question is the extent to which we should insist on students actively 
making this choice whenever they do a randomization test. We think that depends greatly on the 
level and sophistication of the course and students. The actual results will generally vary little 
between different randomization methods. The key point for all students to see is that the 
randomization samples are created in a way that reflects the null hypothesis.  

 
What About Technology?  

Efficient, easy to use technology is essential for having students apply simulation 
techniques in an introductory course. Fortunately computing power continues to increase and 
become more accessible. The ultimate goal is to allow students to easily use and explore 
simulation-based methods without being overwhelmed with technical/programming issues. Ideally, 
the technology should make heavy use of interactive graphics that help illustrate the main concepts 
of inference. For example, it should allow students to see and distinguish between the original 
sample, a single bootstrap or randomization sample, and the distribution of statistics from many 
simulated samples. Software should strike a balance between making methodologies simple while 
not being so automated that it becomes simply a mysterious "black box" that cranks away in the 
background and spits out an answer. 

Here are four good sources of technology tools that are freely available, well-suited for 
supporting a simulation-based curriculum, and designed for introductory student use.  
• StatKey (http://lock5stat.com/statkey/) is a set of web apps we have developed specifically to 

support introductory level instruction based on bootstrap intervals and randomization tests. For 

µ 

Population Bootstrap 
“Population” 

Sampling 
distribution 

In practice, we see only 
one sample (seed) Bootstrap  

distribution 

Grow a new tree! 
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further information check the help pages connected to the StatKey site or a paper specifically 
on StatKey (Lock Morgan et al., 2014) in the ICOTS9 proceedings.  

• Rossman/Chance Applets (http://www.rossmanchance.com/applets/) are web apps developed 
by Allan Rossman and Beth Chance that include support for simulation-based activities. They 
do a particularly nice job of connecting physical randomizations to the computer simulations.  

• VIT: Visual Inference Tools (https://www.stat.auckland.ac.nz/~wild/VIT/) are software 
modules developed by Chris Wild's group at the University of Auckland that make excellent 
use of real-time animations to demonstrate ideas of bootstrapping and randomization tests. 

• Mosaic (http://mosaic-web.org/) is an R package developed by Randall Pruim, Daniel Kaplan, 
and Nicholas Horton that includes a number of student/instructor-friendly features for making 
R more accessible to students, including nice support for simulation-based methods.  

 
Are There Textbooks/materials that Support this Approach?  

In the half dozen years since George Cobb raised his challenge to move away from a 
Ptolemaic-focus on normal and t-based procedures, some progress is now being made on textbooks 
and course materials to support a simulation based approach for courses at an introductory level. 
Tabor and Franklin (2012) have a book geared towards secondary school students that has a sports 
theme, we have developed a text (Lock et al., 2013), the Catalysts for Change group at the 
University of Minnesota has a downloadable textbook (Zieffler et al., 2013) that uses TinkerPlots 
software, and Tintle et al. (in press) have a text in class test form that should be published soon.  

 
CONCLUSION 

After several years using simulation methods to introduce the key ideas of inference, we 
are very happy with this new approach. Students are enthusiastic about the methods, adapt to the 
technology easily, and show improved conceptual understanding on assessments. Formal 
comparisons of methods (e.g. Tintle et al., 2011) are beginning to emerge with encouraging results. 
We hope that we are approaching Cobb’s vision and making “Now, there is no excuse” a reality. 
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