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The article investigates how 14- to 15- year-olds build informal conceptions about data 
distributions, and theoretical probability distributions as they engaged in a multidirectional 
modelling process using computer-based simulations. The students of this study are engaged in 
modelling. First, students examined data from an unknown stochastic process and built a model of 
the processes that might explain the outputs. Second, the students constructed representations that 
generated data whose distributions were well predictive of real world samples. This study shows 
shifts in the conceptual structures across the two directions and points to the potential of specific 
aspects of multidirectional modelling for fostering the development of students’ robust knowledge 
of the logic of inference when using computer-based simulations to model and investigate 
connections between real contexts and data, and probability distributions.  
 
BACKGROUND 

The mathematical modelling process is a significant activity that can be useful in both 
developing and applying mathematical content. There is often a need to obtain a “mathematically 
productive outcome for a problem with genuine real-world motivation” (Galbraith & Stillman, 
2006, p. 143). The use of mathematical modelling for solving problems in a real world environment 
lies “at the heart of functional mathematical literacy” (Burkhardt, 2007, p. 180). The modeling 
process describes how math problems are modeled and solved (Figure 1).  
 

 
 

Figure 1: Modelling process (Galbraith, Stillman, & Brown, 2010, p. 135) 
 

This process of modelling an aspect of phenomena in our world reinforces use of models 
that are formalized in a symbolic system and developed to explain some aspect of our world. Such 
modelling of some aspect of our world is a process that involves  

a variety of diagrams, concrete models, experienced-based metaphors, and other expressive media-
in addition to technical spoken language and symbol systems, each of which emphasize some 
aspects (but deemphasize others) for the ‘thing’ that they are used to describe, to explain, or design. 
Furthermore, model development often involves dimensions of development such as intuition-to-
formalization, concrete-to-abstract, situated-to-decontextualized, specific-to-explicit, global-to-
analytic. (Lesh & Fennewald, 2010, p. 7) 
The modelling process of real world phenomena or situations cannot always be 

deterministic. We have also probabilistic models that incorporate uncertainty or random error in a 
formalized way. These probabilistic models, according to their inherent rules, are expected to 
simulate the behavior of random phenomena and also predict specific properties of random 
phenomena. For instance, random generators can be seen as determined if only one was aware of a 
set of factors that causally affect the behavior, in which case the outcomes would be entirely 
predictable. In practice, this is an unlikely state of affairs and it is likely that one would be 
interested instead in adopting a probabilistic model.  

In this framework a probability distribution of some discernible characteristics has the 
status of a model of the data that describes what one could expect to see if many samples were 
collected from a population, enabling us to compare data from a real observation of this population 
with a theoretical distribution. Several researchers emphasize the importance of drawing 
connections between theoretical or real phenomena, models of such phenomena, and data from the 
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real world or generated by the model (e.g., Konold & Kazak, 2008; Lee & Lee, 2009; Lehrer, Kim 
& Schauble, 2007; Prodromou, 2008; 2012a; 2012b; Stohl & Tarr, 2002). These researchers 
examined the role of the notion of probability distribution through data modelling as a way to draw 
connections between data and probability topics in curricula (e.g., Kazak, 2006) and investigate 
specific aspects of multidirectional modelling when constructing a bidirectional link between the 
distribution of experimental data and the distribution of the theoretical data (Prodromou, 2008, 
2012b).  

Working with a variety of digital tools, these researchers have either investigated (a) 
situations that required students to examine data from “messy” real-world phenomena or derived 
from an unknown stochastic process, and to build a model of the phenomena/processes that might 
explain the outputs, or (b) situations that required students to construct models or observe the 
generation of data from density curves whose distributions were well predictive of real world 
samples. 

These researchers have shown that modelling practices involve making sense of real-world 
phenomena and defining attributes of the phenomena that can be measured. The development of a 
model within a digital tool is the most important and ambitious part of the modelling process, 
because it requires that attributes of the phenomena be defined. However, once such a model is 
designed, the digital environments afford the collection of data from a model that in turn can be 
used to test that same model by comparing model-generated data to real-world data. A model can 
also be used to illustrate aspects of a real-world problem that may not be possible without a data-
generating model.  

This paper presents data from a study in Australian schools, focusing on how 14- to 15-
year-olds develop informal conceptions about data distributions, and theoretical probability 
distributions as students engaged in a bidirectional reasoning process while using TinkerPlots2 
computer-based simulations. At the core of students’ reasoning were the modelling processes 
involved when students observed data from a real-world phenomenon that follow a model and 
when students constructed a model of the phenomenon that generated this data. More specifically, 
in this study, students were introduced to theoretical and experimental data of Australian monthly 
mean temperatures for September 2012 to October 2013, implicitly through a simulation-based 
approach, and chance variation as an idea was assessed in an intuitive fashion.  

  
THEORETICAL FRAMEWORK  

I draw heavily on two lines of research. The first explicates a framework introduced by 
Prodromou (2012b) to focus the design of the instructional tasks used by students when engaged in 
collecting, analysing, and interpreting components of this framework in order to relate results from 
empirical data from a concrete or a computer-simulated two dice rolling experiment with the 
expected results based on a model of a sample space (based on the analysis of sample space 
composition), when rolling two dice. This framework that described the process of bidirectional 
modelling involves the following components: 1. Posing a question, 2. Collecting data, 3. 
Analyzing data, and 4. Interpreting the results (Friel, O’Conner, & Manner, 2006). Moreover, I 
draw on research that introduces four primary phases of inferential reasoning when students use 
computer-based simulations to model and investigate statistical questions (Prodromou, 2013).  

To answer the research question about how students develop a bidirectional reasoning 
about quantities represented in data distributions of sample probability populations, and theoretical 
probability distributions as students engaged using TinkerPlots2 computer-based simulations, I 
explicate a framework that will focus on the phases of bidirectional reasoning in the modelling and 
simulation process when students when engaged in collecting, analysing, and interpreting 
components of this framework (see figure 2). 

In one direction − the “real world data” branch of the framework−, when students begin 
with examining the distribution of data from an unknown stochastic process or from a real-world 
problem, they pose questions about particular aspects of data so they will be able to better describe, 
summarize, compare and generalize data within a context. The second component, collecting data, 
includes a variety of data collections from populations and samples or generated from a probability 
experiment. Analyzing data, the third component, involves perceiving a set of data as a distribution 
when a probability experiment is performed. The fourth component, interpreting the results, 
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encompasses making decisions about the question posed within the context of the problem based 
on experimental data, and making inferences about a probability distribution. The fifth component, 
evaluating the model, involves evaluating whether the probability distribution explains the data 
(that I considered it as a model) and compare the behavior of the model to observed data. If the 
model fully explains the data, then the decisions about data and characteristics of data are reported. 
If the model does not fully explain the data, then the modelling process is repeated until a model 
that fully explains the outputs is found.  

 

 
 

Figure 2: Framework describing the process of bidirectional modelling 
 

In the other direction− the “model” branch of the framework−, when students are engaged 
in constructing representations that generate data whose distribution are well predictive of real-
world samples, they pose questions about a model that will generate data to simulate the real-world 
problem. This first component involves using a software interface that relies on signal, variation, 
and spread of data to construct the model. The second component involves using the model to 
generate a single trial of the simulation, investigating the outcomes from a single trial, constructing 
an appropriate representation of the outcomes from the single trials. The second component 
involves analyzing the outcomes from a single trial and considering possible outliers and other 
individual cases. The third component involves using the model to generate simulated data for 
many trials, each time interpreting the results of the simulated outcomes while using the observed 
distribution to assess particular outcomes. The fourth component, evaluating, involves evaluation 
of the model by comparing its behavior to real data. Such a comparison may prompt them to make 
interpretative decisions and then either decide to complete the investigative cycle or to continue the 
investigative cycle by changing the model, and then repeating the phases of the modelling process.  

Through several iterations of all phases, in both directions, the students can develop their 
understanding by beginning to integrate the different elements of their experience into a set of 
conceptual connections between model and real-world data.  

 
METHODOLOGY 

Thirty students in Grade 9, ranging from 14 to 15 years in age, from a rural secondary 
school in New South Wales, Australia, formed the population of this study. The researcher spent 2 
sessions (40-45 minutes each) introducing the class teacher and the students to Tinkerplots2 during 
regular mathematics lessons. All students were familiarised with the TinkerPlots2 software, 
focusing on its use. In the first session, students watched instructional movies about how to build a 
simulation in TinkerPlots2. In the second session, students participated in a number of introductory 
activities related to building a model that simulates real phenomena. They also ran a simulation, 
observed the generation of data, and explored the output data. Ten students volunteered to spend 
two extra sessions, outside of class time, to engage in the task reported in this study. In these 
sessions, students used TinkerPlots2 to construct a simulation of some climatic data for January to 
December 2013, in the students’ home city.  
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In the first session, the students used pre-defined probability distributions to draw a density 
curve that Tinkerplots2 used to generate temperature data. After constructing their model, students 
were asked to run the simulation and interpret the outcomes. In the second session, students looked 
for real-world data from the Australian Bureau of meteorology and observed monthly mean 
maximum and mean minimum temperatures for September 2012 to October 2013. 

Each session lasted approximately 45-60 minutes and each pair of students worked directly 
with the researcher. The researcher interacted continuously with the students in order to observe the 
reasoning they used to explain the data and simulations. Data collected included audio recordings 
and video recordings of the screen output on the computer activity. This paper reports work of one 
pair of students engaged in the modelling process of the “model” branch of the framework.  

 
RESULTS  

 

 
 

Figure 3. Students’ initial (3a, top left) and redrawn (3c, bottom left) models of mean temperatures 
and subsequent data generated from each model (3b, top right, and 3d, bottom right). 

 
The session began by having students creating a model (Figure 3a) that generates data that 

simulate the monthly mean temperature for January to December 2013, in Australia. First the 
students posed questions about mean monthly temperatures in Australia to gain information on 
which to build their model. They suggested grouping the months into seasons. They stated that 
during December, January, February and March the mean temperature is high; in April the 
temperature drops; in May and June the temperature drops dramatically; in July and August, that 
temperature drops very low; and that during September, October, and November the temperatures 
rise again. One of the students in the pair wanted to include very high and very low temperatures 
that would change the model. The other student added that temperature anomalies are included in 
the mean temperature. After their discussion about the signal, variation, and spread of data 
involved in the model, the students engaged with using a software interface to construct the model 
(Figure 3a). After generating mean temperatures for January 2013 to December, the students 
looked at the distribution of the monthly temperatures (Figure 3b) and they began interrogating the 
context of their personal experiences. They used TinkerPlots2 to generate simulated temperatures 
from the model, considering each time possible outliers/temperature anomalies and other individual 
data cases. During the processes of interpreting the results of the simulation model, while using the 
observed distribution to assess the outcomes, the students realized that the mean temperature for 
December in the generated data was lower than its real counterpart, and the mean temperature for 
April was higher than the real temperatures they personally experienced. The model (the density 
curve drawn in the sampler) appeared to need changes of mean temperature for the months 
December and April. This fourth component of evaluating the model required the students to make 
interpretative decisions in regards to changing the model by redrawing the density function of the 
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monthly mean temperature in Australia. This redrawn model (Figure 3c) was used through each 
phase of the framework and produced computer-generated data that the students judged as 
representative of the real data. Nonetheless, the pair was not ready to make a final decision about 
the adequacy of the model and complete the investigative cycle. 

Students articulated that they were not able to consider the goodness of the model, if they 
would not be provided with opportunities to observe the actual monthly mean temperature for 
January 2013 to Dec 2013 in the original distribution of data and the model-generated data. When 
they attempted to find information about weather during the 14 months from September 2012 to 
October 2013, from the Australian Government Bureau of meteorology website, they learned that 
October temperatures were unusually warm compared to the 1961-1990 mean. The students looked 
closely at the temperatures in October of previous years. When they compared their model to the 
graphical representations of the temperatures in October of 2011 and October 2010, they concluded 
that the model they built was okay because it matches common temperature variation, but not the 
particularly warm October 2012. Students focused their attention on examining monthly 
temperatures of previous years that broke the national record for the warmest 12 month period 
because they believed that if they were able to detect a temperatures pattern in the Australian’s 
climate change over the last years, they could make predictions about the future temperatures.  

 The one student of the pair argued that since this year the mean spring temperatures broke 
the national record for the warmest 12-months period, it was impossible to create a model that 
would accurately simulates annual temperatures for the next years. He added that if the 
temperatures keep on increasing over time they do not know how many degrees Celsius would be 
increasing. 

The other student looked at the global mean temperature over the last 100 years and added 
that the global mean global temperature has increased by around 0.74 °C, and this rate of warming 
was very unusual in the context of natural climate variability. Perplexed about the vagaries of the 
weather, the students decided to increase the Spring and Summer temperatures in in their model. 
However, the one of the students explained that although the record for Australia’s warmest 
calendar year is currently held by 2005, there is no guarantee that 2013 will go on to be Australia’s 
hottest calendar year on record, because as the temperatures decreased after 2005, the temperatures 
for the remainder of the year may be decreased.  

 
DISCUSSION  

The students at the first phase of the modelling process relied explicitly on their personal 
experiences to draw a density curve that Tinkerplots2 used to generate temperature data. They 
recalled common temperatures for several months and implemented in their model common 
temperature variation. The design of the model requires a fairly good co-ordination of common 
temperatures of several months (signal) and common temperature variation (noise), so that 
modelers can make “optimal” choices when designing a model that will generate sample data that 
resembles as much as possible the actual monthly temperatures for January 2013 to December 
2013. The way students expressed the relationship between common temperatures for several 
months (signal) and common temperature variation (noise) is of vital importance while they are 
working with real temperatures and observing climate change and variability of temperatures in 
Australia. In fact, the reasoning the students do between actual temperatures in Australia and the 
model that they built for the monthly mean temperature for January 2013 to December 2013 is 
associated with what they experience in the behavior of the climate change over time.  

They sought for information about mean temperature anomalies and graphical 
representations of Australian monthly mean temperature anomalies for the last months. These 
temperature anomalies were compared to climate anomalies and national records for the warmest 
12-month periods of previous years. Expressions focusing on these comparisons of temperatures 
from previous different years and the relation between common temperatures and common 
temperature variation, involve elements of abstraction and simplification of reality with respect to 
the real situation studied. In this article, the model that students built for the monthly mean 
temperature for January 2013 to December 2013, emphasizes the mathematization of real situations 
in meaningful ways for the learner. Although no models that are represented in a symbolic system 
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suitable for probability calculus have been developed and used by students in this study, the 
modelling activities enable students to draw connections between science and mathematics.  

It is interesting what we can learn from the way the students compared their model with the 
real Australian temperatures. Students’ understanding of the connection of science and 
mathematics is increased by the modelling activities. Students realized that science (climate 
change) can be used to inform them about the past and to develop mathematical models that make 
prediction about the future. A computer simulation-based approach to bidirectional modelling, 
scaffolds the construction of a bidirectional reasoning between theoretical simulations that models 
and investigates connections between a real context, real monthly temperatures, common 
temperatures for several months (signal), common temperature variation (noise) and probability 
distribution that is specified by a density function. These are areas where sophisticated 
understanding and more expert knowledge in probability distributions, statistical knowledge and 
temperature trends can be useful to students in decision making and modelling monthly mean 
temperature for a certain period of time. 

 
REFERENCES 
Burkhardt, H. (2007). Functional mathematics and teaching modeling. In C. Haines, P. Galibraith, 

W. Blum, and S. Khan (Eds.), Mathematical modeling: Education, engineering and Economics 
(pp. 177-186). Chichester, UK: Horwood.  

Friel, S. N., O’ Connor, W., & Mamer, J. D. (2006). More than “meanmedianmode” and a bar 
graph: What’s needed to have a statistical conversation? In G. F. Burrill (Ed.), Thinking and 
reasoning with data and chance: Sixty-eighth yearbook (pp. 117-137). Reston, VA: National 
Council of Teachers of Mathematics. 

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during 
transitions in the modeling process. ZDM, 38(2), 143-162.  

Galbraith, P., Stillman, G., & Brown, J. (2010). Turning ideas into modeling problems. In R. Lesh, 
P.L. Galbraith, C. R. Haines & A. Hurford (Eds.), Modeling students' mathematical modeling 
competencies , (pp. 133-1443). New York: Springer. 

Kazak, S. (2006). Investigating elementary school students’ reasoning about distributions in 
various chance events. Unpublished dissertation, Washington University, St. Louis, MO. 

Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovation in 
Statistics Education, 2(1), [Online http://www.escholarship.org/uc/uclasta_cts_tise].  

Lee, H. S., & Lee, J. T. (2009). Reasoning about probabilistic phenomena: Lessons learned and 
applied in software design. Technology Innovations in Statistics Education 3(2), [Online 
http://www.escholarship.org/uclastat_cts_tise].  

Lehrer, R., Kim, M., & Schauble, L., (2007). Supporting the development of concepts of statistics 
by engaging students in modeling and measuring variability. International Journal of 
Computers for Mathematics Learning, 12, 195-216.  

Lesh, R., & Fennewald, T. (2010). Introduction to part I modeling: What is it? Why do it? In R. 
Lesh et al. (Eds.), Modeling students’ mathematical modeling Competencies, (pp. 5-10). New 
York: Springer. 

Prodromou, T. (2008). Connecting thinking about distribution. Unpublished doctoral dissertation, 
University of Warwick, Warwick, UK. 

Prodromou, T. (2012a). Students’ construction of meanings about the co-ordination of the two 
epistemological perspectives on distribution. International Journal of Statistics and 
Probability, 1(2), 283-300. doi: 10.5539/ijsp.v1n2p283 

Prodromou, T. (2012b). Connecting experimental probability and theoretical probability. ZDM – 
The International Journal on Mathematics Education, 44(7), 855-868.  

Prodromou, T. (2013). Informal inferential reasoning using a modelling approach within a 
computer-based simulation. World Academy of Science, Engineering and Technology, 78, 
1761-1766. URL: http://www.waset.org/journals/waset/v78/v78-301.pdf 

Stohl, H., & Tarr, J. E. (2002). Developing notions of inference with probability simulation tools. 
Journal of Mathematical Behavior, 21(3), 319-337. 

TinkerPlots: Dynamic data exploration (Version 2.0) [Computer software]. Emeryville: CA: Key 
Curriculum Press. 

ICOTS9 (2014) Invited Paper Prodromou

- 6 -


