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Collecting data, producing plots such as histograms and scatter plots, and calculating numerical 
statistics such as means, medians, and regression coefficients are relatively concrete operations. In 
contrast, ideas related to the random variability of those statistics—sampling distributions, 
standard error, confidence intervals, central limit theorems, hypothesis tests, P-values, and 
statistical significance—are relatively abstract, and more difficult for students to understand. 
Bootstrap methods and permutation tests take those concrete tools, that students are used to using 
with data, and apply them to sampling distributions. This promotes understanding. We demonstrate 
using two examples—one involving linear regression, the other comparing two sample means. We 
finish by discussing why the bootstrap works, and what to watch out for. 
 
LINEAR REGRESSION EXAMPLE—BUSHMEAT 

The goal of this section is to demonstrate the basic mechanics of the bootstrap and show 
how to use the bootstrap to get visual and numerical measures of variation. 

The consumption of “bushmeat,” the meat of wild animals, threatens the survival of some 
wild animals in Africa. This pressure might be reduced if alternative supplies of protein were 
available. Brashares et al. (2004) studied the relationship between fish supply and demand for 
bushmeat in Ghana. Part of their data is shown in the following table and Figure 1, data from 30 
years of local fish supply and biomass of 41 species in nature preserves. They found a relationship 
between fish supply and the hunting of bushmeat, measured by the change in biomass; we 
investigate that relationship below. They also corroborated that relation with other data, such as the 
supply of bushmeat in local markets. 

 

year

Pe
r c

ap
ita

 fi
sh

 s
up

pl
y 

(k
g)

1970 1975 1980 1985 1990 1995 2000

20
25

30
35

40

year

W
ild

life
 b

io
m

as
s

1970 1975 1980 1985 1990 1995 2000

20
0

40
0

60
0

80
0

10
00

 
 

Fig. 1. Bushmeat and Fish: 30 years of data of local supply of fish per capita and biomass of 41 
species in natural parks in Ghana 
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Table 1: Bushmeat: Local Supply of Fish per Capita (kg), 
and Biomass of 41 Species in Nature Preserves 

 
Year Fish Biomass Year Fish Biomass Year Fish Biomass 
1970 28.6 942.54 1980 21.8 862.85 1990 25.9 529.41 
1971 34.7 969.77 1981 20.8 815.67 1991 23.0 497.37 
1972 39.3 999.45 1982 19.7 756.58 1992 27.1 476.86 
1973 32.4 987.13 1983 20.8 725.27 1993 23.4 453.80 
1974 31.8 976.31 1984 21.1 662.65 1994 18.9 402.70 
1975 32.8 944.07 1985 21.3 625.97 1995 19.6 365.25 
1976 38.4 979.37 1986 24.3 621.69 1996 25.3 326.02 
1977 33.2 997.86 1987 27.4 589.83 1997 22.0 320.12 
1978 29.7 994.85 1988 24.5 548.05 1998 21.0 296.49 
1979 25.0 936.36 1989 25.2 524.88 1999 23.0 228.72 

 
There is a general decline in biomass over the study period, with a steeper decline in years 

with less fish. Figure 2 shows a positive relationship between fish and change in biomass. The 
correlation is 0.67, and regression slope is 0.63, suggesting that an increase of 1 kg of fish per 
capita per year results in a gain (or less of a loss) of about two-thirds of one percent of biomass. 
The y intercept is -21.1, giving a prediction of a 21% decline in biomass were the fish supply to 
disappear. On the other hand, the x intercept of the regression line is 33.3, suggesting that 33.3 kg 
of fish per capita would suffice to forestall further wildlife declines. 
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Figure 2. Change in Biomass versus Fish Supply: scatterplot of change in biomass versus fish 

supply for 29 years, with a linear regression line superposed. The left panel shows the original data, 
and the right panel depicts one bootstrap sample, as a “sunflower” plot, where the number of petals 

is the number of times an observation is repeated. 
 

However, those estimates are obtained from a limited amount of data. How accurate are 
they? We use the bootstrap to estimate this. We begin by taking one bootstrap sample—a random 
sample with replacement, of the same size, from the original data. Here we pick 29 random years 
from the original 29 years (omitting 1971 because the change in biomass between 1970 and 1971 is 
unknown): 1995, 1982, 1989, 1990, 1973, 1990, 1982, 1987, 1973, 1974, 1978, 1974, 1978, 1987, 
1983, 1982, 1977, 1978, 1991, 1983, 1971, 1992, 1976, 1977, 1999, 1986, 1989, 1971, and 1974. 
The right panel of Figure 2 shows this bootstrap sample. Because we are sampling with 
replacement, some of the original observations are omitted whereas others appear more than once. 
We compute the same statistics for this sample that we calculated for the original sample. For this 
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bootstrap sample, the correlation is 0.68, slope is 0.65, y intercept is –20.9, and the x intercept is 
31.9. We repeat the process tens or thousands of times—drawing thousands of random bootstrap 
samples and computing the statistics of interest. We use the variability in these bootstrap statistics 
to estimate the variability in the original statistics. 

Figure 3 shows two views of the bootstrap output. The left panel is a graphical bootstrap: 
regression lines for 25 bootstrap samples. We see how the regression lines vary. The farther to 
either side we look, the more the y value of the lines varies. This helps students see how 
extrapolation provides less accurate answers. 
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Figure 3. Bootstrap Regression Lines and x Intercept: (L) Regression lines calculated from 40 
bootstrap samples of the bushmeat data; (R) Histogram and density curve for x-intercepts of 

regression lines from 1000 bootstrap samples (These are the estimated values of fish supply that 
would result in zero loss of biomass.) 

 
The regression suggests that increasing the fish supply would reduce bushmeat harvest, and 

the x-intercept suggests that 33.3kg of fish would stop the loss of wildlife. We can use the bootstrap 
to get an idea how accurate that number is. We’ll use more bootstrap samples for better accuracy; 
we create 1000 bootstrap regression lines, record where each line intercepts the x axis, and plot a 
histogram of those x intercepts, to obtain the right panel of Figure 3. The original value of 33.3 falls 
in the middle of this distribution. The middle 95% range is from 31.6 to 35.5, giving a rough idea 
of the reliability of the estimate. We are reasonably confident (95%) that the supply of fish needed 
to forestall loss of biomass lies in that interval, assuming that historical data is representative of the 
future (other factors such as global warming and population growth could change matters). The 
interval (31.6, 35.5) = (33.3 – 1.7, 33.3 + 2.2) stretches farther to the right, which tells a pessimistic 
tale—it takes more fish to gain confidence on the positive side than to lose confidence on the 
negative side. 

To summarize, we draw random samples from the data with replacement (bootstrap 
samples), and compute the statistic(s) of interest (like the x intercept). The variation of these 
bootstrap statistics gives an idea of the accuracy of the original statistic(s). The range of the middle 
95% of the bootstrap statistics gives a 95% confidence interval for the true unknown parameter; 
this is known as a bootstrap percentile interval. While there are more accurate bootstrap intervals, 
this one is good for helping intro stats students understand the idea of a confidence interval. 

The bootstrap SE for the prediction at any value of x is the standard deviation of the 
regression lines at that x. For comparison, the classical estimate of the standard error is 

. Not only is the picture more intuitive for students, it is also more 

accurate – the classical formula assumes homoscedasticity, but here the residuals are more variable 
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when x is smaller. This makes sense in the context of the application; when x is large, there is less 
hunting, and less variation in hunting pressure. 
 
TWO-SAMPLE MEANS EXAMPLE – TV ADVERTISEMENTS 

We look next at data collected by a student for a statistics project, comparing time spent on 
commercials in basic and extended (extra-cost) cable channels. We’ll start by bootstrapping the 
mean of one sample, then the difference in means of two samples, and finally test whether the 
difference is statistically significant using a permutation test. Here are the data, from 
apstats.4t.com. 

 
Table 2: Number of Minutes of Commercials during  
Random Half-Hour Periods from 7A.M. to 11 P.M. 

 
Basic 7.0 10.0 10.6 10.2 8.6 7.6 8.2 10.4 11.0 8.5 
Extended 3.4 7.8 9.4 4.7 5.4 7.6 5.0 8.0 7.8 9.6 

 
The means of the basic and extended channel commercial times are 9.21 and 6.87, 

respectively, a difference of 2.34 minutes. How accurate are these numbers? There is not much 
data—the poor student could only stand to watch 10 hours of random TV! 

The average for the basic channel is 9.21 minutes. To assess the accuracy of this number 
by bootstrapping, we draw bootstrap samples of the same size as the original data (10 observations 
with replacement from the original 10 basic-channel numbers), and compute the mean for each 
bootstrap sample. I would normally show a histogram, but omit that here to save space; it appears 
approximately normal, centered at 9.21, with a standard deviation of 0.42 (the sample standard 
deviation of the bootstrap means). 

What we have just done, in a perfectly natural way, is to calculate the bootstrap standard 
error. The bootstrap standard error (SE) is the standard deviation of the bootstrap distribution. A 
SE, by definition, is an estimate of the standard deviation of a statistic. Students who are taught that 
the formula for the standard error of a mean is  may never truly understand that a SE is the 
standard deviation of the distribution of a statistic, and how that is distinct from the distribution of 
data. The bootstrap reinforces this idea by calculating the SE directly from a distribution for the 
statistic. 

We follow the same process for the extended channel; this histogram is also approximately 
normal and centered at the original sample mean; the bootstrap SE is 0.63. For comparison, the 
formula SEs are 0.44 and 0.67; the bootstrap standard errors are a bit shorter, but otherwise the 
bootstrap and formula standard errors are quite similar. This similarity lets students check their 
work. 

Now consider the problem we are really interested in—comparing the two samples. To 
bootstrap the difference in means, we draw bootstrap samples from each original sample 
independently, compute the difference in means, and repeat say 1000 times. The 1000 differences 
in means comprise the bootstrap distribution for the difference in means. This distribution is shown 
in the left panel of Figure 4. The distribution is centered at the original difference in means, 2.34 
minutes, and is approximately normal with a standard deviation of 0.76 (the bootstrap SE). I 
believe that the combination of the picture and standard deviation is more intuitive for students 
than is the formula SE . The distribution is approximately normal, illustrating the 
Central Limit Theorem.  

Before turning to permutation tests, we share two thoughts: 
 

• It is interesting for students to see histograms and normal quantile plots of bootstrap 
distributions from a series of samples with the same skewness but different sample sizes, to see 
how well the CLT works with different sample sizes. 

• It is good for students to see bootstrap distributions from data with different sample sizes but 
similar sample standard deviations s, to see how the standard error changes with n. 
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Figure 4. Sampling Distributions for Difference in Advertisements: left: histogram of the bootstrap 
distribution for the difference in mean advertisement time, in basic versus extended TV channels. 

Right: same, for the permutation distribution. 
 
Permutation Tests for P-Values 

So far the data appear to support the student’s working hypothesis, that basic cable TV 
channels have more advertising than extended channels. But is the difference statistically 
significant? Or could it have easily occurred just by chance? The bootstrap percentile interval, the 
middle 95% of the bootstrap distribution, excludes zero, suggesting that more than chance is 
involved. But a formal test would be better. 

Statistical significance is measured using a P-value—the probability of observing a statistic 
this large or larger, if the null hypothesis is true. In other words, assuming there is no real 
difference between basic and extended channels, how often would a difference of 2.34 minutes or 
more occur just by chance? 

To answer this question we must resample in a way that is consistent with the null 
hypothesis. Suppose there is no real difference between the two populations, that there is really just 
one population. Then we may pool all observations to form an estimate of the combined population 
and draw samples from that. A permutation sample is created by drawing n1 observations without 
replacement from the pooled data to label as one sample, leaving the remaining n2 observations as 
the second sample. We calculate the statistic of interest, e.g. the difference in means of the two 
samples. We repeat this many times—1000 or more. The one-sided P-value is 0.0054, the fraction 
of times the random statistic exceeds the original statistic, the area to the right of 2.54 in the right 
panel of Figure 4. In this case we use a one-sided test, because the student’s hypothesis was that 
basic channels would have more commercials. For a two-sided test we multiply the one-sided 
P-value by two. 

One pedagogical advantage of this procedure is that it gives students a visual picture of the 
P-value. Another advantage is that it works directly with the statistic of interest, the difference in 
sample means, rather than forcing students to transform that statistic of interest into a t-statistic so 
they can use a t-table to calculate a P-value. A third is that it provides students a way to check their 
work; when permutation distributions are approximately symmetric, the t-test P-value should be 
close to the permutation-test P-value. In this case they are close; the t-test P-value is 0.00498.  

What if the permutation and t-test P-values differ? Then the t-test is wrong, sometimes 
dramatically so, e.g. by a factor of 4 in a consulting project (Hesterberg 2002). This occurs when 
the permutation distribution is skewed, due to skewness in the data, and with unequal sample sizes 
so the skewness does not cancel out. The permutation test is the gold standard, accurate even for 
very small samples. Indeed, Fisher originally justified the t-test as an approximation to the 
permutation test, in the pre-computer era when permutation distributions were difficult to compute.  
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WHY THE BOOTSTRAP WORKS 
A sampling distribution is the distribution of a statistic when drawing random samples 

from a population. It would be nice to estimate the sampling distribution by doing exactly that—
drawing samples from the population and computing the statistic, and repeating many times. The 
problem is that the population is unknown, or it would be too expensive to draw repeated samples 
from that population. 

The bootstrap substitutes an estimate for the population for the population. We draw 
samples from that estimate, compute the statistic, and repeat many times. 

In the usual nonparametric bootstrap, the estimate is the empirical distribution, i.e. we 
draw samples from the data. In upper-level courses we may use a parametric bootstrap instead, in 
which we estimate parameters from the original data, then draw from parametric distributions with 
those parameters. 

The fact that the bootstrap mimics real life offers a variety of pedagogical benefits. It 
reinforces the role that random sampling plays in statistics. It lets us investigate what would happen 
with different sampling methods, e.g. stratified sampling. We can do “what-if” analyses, e.g. to see 
how sample size matters we can draw bootstrap samples of different sizes (with replacement from 
the same original sample). 

 
When the Bootstrap Fails; When it is Better 

The bootstrap fails when the empirical distribution is a poor estimate of the population. 
This is particularly true in small samples. For a single mean, the bootstrap percentile interval is like 
a t-interval, but using zα instead of tα, calculating s with a divisor of n instead of n-1, and making a 
skewness adjustment based on skewness estimated from the sample. That does not work well in 
small samples. 

People tend to think of bootstrapping for very small samples, and rely on classical methods 
for medium and larger samples. That is turned around. The bootstrap relies on the data to tell the 
shape of the population. In very small samples the data cannot do that reliably, and the bootstrap is 
too variable. Conversely, in medium samples, people do not realize how poor classical methods 
are. For example, it requires n = 5000 before the 95% one-sample t-interval is reasonably accurate, 
if the population has the skewness of an exponential distribution (Hesterberg 2008). 

 
CONCLUSION 

We presented two examples that demonstrate the pedagogical value of resampling, for 
understanding sampling distributions, standard errors, P-values, confidence intervals, the Central 
Limit Theorem, prediction accuracy and extrapolation. 

For further examples and discussion of resampling for teaching, see Hesterberg et al. 
(2005) for introductory statistics, Chihara and Hesterberg (2011) for mathematical statistics, and 
other articles at http://www.timhesterberg.net/bootstrap. 
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