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The main focus of teaching statistics at school is statistical literacy, which uses as little 
mathematics as possible. This fact together with an unappealing training emphasizing scattered 
definitions and computational recipes, makes mathematics teachers to strongly dislike statistics. 
Although the main issue is statistical literacy, providing an underlying mathematical structure for 
the statistical concept should help making the subject more interesting to mathematically trained 
people. It is shown that the mathematical concepts of invariance and equivariance under a family 
of transformations, including some concrete and intuitive interpretations, provide an insight on 
frequency distributions, graphical displays, and summary measures. The latter can then be 
rigorously defined, which makes it possible to construct new measures. 
 
INTRODUCTION 

It is known that mathematics teachers and their students tend to dislike statistics. One 
explanation for this behavior is that their training includes mainly scattered definitions and 
computational details. Another is that statistical literacy uses very little mathematics. To make 
statistics more attractive for mathematics teachers we provide an underlying mathematical structure 
for the different statistical concepts, which is based on invariance, maximal equivariant, and 
equivariance under some family of transformations. Though these concepts are normally treated in 
advanced courses of mathematics and statistics, we only deal here with elementary aspects and also 
provide intuitive interpretations. This structure gives a useful insight into frequency distributions, 
graphical displays, and summary measures.  

We deal with the rectangular 𝑛 × 𝑘 data sets generated by 𝑛 units and 𝑘 variables, the 
nature of which is unrestricted, so that nominal, ordinal, discrete, and continuous variables are 
included. Thus the row associated with unit 𝑖 can be identified with an array 𝑧𝑖 of length 𝑘 and the 
whole data set corresponds to the array 𝑧 = (𝑧1, … , 𝑧𝑛). Introducing additional variables if 
necessary, it is possible to assign a non-informative label to each row, and these labels can be 
dropped if one so wishes. The relevant information is said to be invariant under permutations of 
the rows or permutation invariant. The intuitive idea of invariance is that if the data is transformed 
in a certain way, some statistics (which may include graphical displays) remain unchanged. A 
maximal invariant is a function of any any invariant statistic and represents the maximal possible 
reduction of the data using invariant arguments. Maximal invariants are not unique but they are 
equivalent in the sense that we one can get one from the other. An statistic is equivariant if it 
transforms in the same way as the data do. 

A crucial result is that a frequency distribution is a maximal invariant under permutations, 
which leads to all usual ways of describing univariate and bivariate distributions, as well as their 
corresponding displays. To study summary measures we need to discuss invariance and 
equivariance under other families of transformations, like change of location, change of scale, and 
change of sign. To motivate the concepts we first recall some well known properties of the of the 
mean, of the standard deviations, and of the quantiles. We then turn around the argument and use 
some of these properties to rigorously define each type of measure. 

 
METHOD 

We start by applying permutation invariance to show that the vector of frequencies is a 
maximal invariant. For a fixed number of data values, the vector of frequencies is equivalent to the 
vector of relative frequencies, which is just the frequency distribution. We look for equivalent 
maximal invariants depending on the type of variable. For a continuous variable this is satisfied by 
the vector of order statistics and by the dot plot. For two categorical variables, contingency table is 
the maximal invariant. For two continuous variables it is shown that the scatter plot is a maximal 
invariant. When the variable 𝑋 takes 𝑟 values and 𝑌 is a continuous variable, finding a dot plot for 
𝑌 for each of the 𝑟 different values of 𝑥 leads to parallel dot plots. To find rigorous definitions of 
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the different types of summary measure we start by recalling the properties of the mean and the 
standard deviations, and frame them in the language of invariance of equivariance. The quantiles 
satisfy some properties of the mean, but not all. We use the properties that are satisfied to define a 
measure of position. The case of the quantiles is quite special since they satisfies reflection 
equivariance and a time reversal property. A measure of central tendency is then a particular 
measure of position satisfying reflection equivariance and a condition that essentially states thet if 
we compute the summary measure for symmetric data we get the center of the distribution. Finally 
we define a measure of dispersion as that that satisfies some invariance and equivariance conditions 
plus positivity. Finally, we provide three general methods that can be used to create measures of 
dispersion. 

 
RESULTS 

For a categorical variable the maximal invariant under permutations is the frequency array 
𝑛 = (𝑛1, … ,𝑛𝑟), where 𝑛𝑗 is the number of units associated category 𝑐𝑗. When 𝑛 is known the 𝑛𝑖 
can be replaced by the relative frequencies 𝑓𝑖 = 𝑛𝑖

𝑛
, and we call the corresponding vector (or 

function) the frequency distribution. The use of relative frequencies can be also justified when the 
statistc of interest does not change when each data value is replicated 𝑘 times, where 𝑘 is a positive 
integer. We say that this statistic is invariant under replications. 

The same holds for ordinal, discrete, and continuous variables, although in general the 
values are not known a priori. From the point of view of the observed data, discrete and continuous 
variables behave alike, since the observed values belong to a finite set. A conceptual difference 
between continuous and discrete variables is that in the first all values should be different if written 
with enough decimal places and so there will be no ties. In this case 𝑛𝑖 = 1, for all 𝑖, and by 
permutation invariance the only relevant information is the set of observed values. This implies the 
ordered data 𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑛). Since the set of these order statistics is equivalent to the 
frequency distribution, it is also a maximal invariant. The case of two variables 𝑋 and 𝑌 can be 
analyzed similarly by using the artificial variable 𝑍 = (𝑋,𝑌); the joint frequency distribution 𝑋 and 
𝑌 is then a maximal invariant. When 𝑋 and 𝑌 have 𝑟 and 𝑠 possible values the contingency table is 
also maximal invariant. When 𝑛 is fixed the absolute frequencies can be replaced by relative 
frequencies without any loss of information. When the frequency of each 𝑥 is fixed by design, the 
collection of conditional frequency distributions of 𝑌 for given 𝑋 = 𝑥 is then a maximal invariant. 
When 𝑋 and 𝑌 are both continuous ties seldom arise and the set of 𝑛 vectors (𝑥𝑖 ,𝑦𝑖), or the 
corresponding scatter plot are maximal invariants. Assume that 𝑋 is categorical and that we want to 
compare the distribution of a continuous variable 𝑌 between the different categories 𝑥. In this case 
the collection of conditional distributions or the parallel dot plot are maximal invariants. 

MEASURES OF POSITION AND CENTRAL TENDENCY 
We start by reviewing the elementary properties of the mean. It is easily checked that the 

mean is (a) invariant under permutations and (b) invariant under replications, so that it is 
determined by the relative frequencies. For a given function 𝑔,𝑦𝑖 = 𝑔(𝑥𝑖) induces a transformation 
of 𝑥 into 𝑦 . Then the mean 𝑚 is (c) location equivariant: 𝑦𝑖 = 𝑥𝑖 + 𝑐, implies 𝑚( 𝑦 ) = 𝑚( 𝑥 ) +
𝑐; (d) scale equivariant. 𝑦𝑖 = 𝑑𝑥𝑖, 𝑑 > 0 implies 𝑚( 𝑦 ) = 𝑑𝑚( 𝑦 ); (e) reflection equivariant: 
𝑦𝑖 = −𝑥𝑖 implies 𝑚( 𝑦 ) = −𝑚( 𝑥 ). Furthermore, (c, d) is equivalent to (f) invariance under 
changes of location and scale: 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 , 𝑏 > 0 implies 𝑚( 𝑦 ) = 𝑎 + 𝑏𝑚( 𝑥 ), while (c,d,e) 
implies (g) invariance under affine linear transformations 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 implies m(y) = a +bm(x), 
where 𝑏 is allowed to be negative. 

A summary measure is a measure of position if (a)-(d) hold; a measure of position is a 
measure of central tendency when (e), as well as a symmetry condition (g) to be defined below 
holds. According to this definition, the mean, the median, the minimum, the maximum, and the 𝑝-
quantiles can be checked to be measures of position. The 𝑝-quantiles must be defined separately 
according to 𝑛𝑝 being an integer or not. 

The data vector 𝑧 = (𝑧1, … , 𝑧𝑛) is said to be symmetric about 0 if 𝑧(𝑛−𝑖+1) = 𝑧(𝑖) for 
𝑖 = 1, … ,𝑛;  𝑥 is said to be symmetric about 𝑐 if the vector 𝑦 generated by 𝑦𝑖 = 𝑥𝑖 − 𝑐 is symmetric 
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about 0. 𝑐 is called the center of the distribution, A measure of position 𝑆 is said to be of central 
tendency if (h) For 𝑥 symmetric about 𝑐, 𝑆( 𝑥 ) = 𝑐, but when 𝑛 is even the middle observation 
must be excluded before computing the center. The mean, the median, and the midrange are 
measures of central tendency. A more general family is  

 𝑆𝑛 = ∑  𝑛
𝑖=1 𝑐𝑖𝑋(𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖  =  𝑐𝑛+1−𝑖,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 ∑  𝑛

𝑖=1  𝑐𝑖 = 1.  
Some additional properties of the quantiles are: 
 
• Equivariance under continuous strictly increasing transformations 𝑔. If 𝑦𝑖 = 𝑔(𝑥𝑖), 𝑆( 𝑦 ) =

𝑔(𝑆( 𝑥 )). Location and scale equivariance is a particular case.  
• Time reversal property. Let 𝑟 be an integer: (i) If 𝑟 − 1 < 𝑛𝑝 < 𝑟, the 𝑝-quantile is the 𝑟 − 𝑡ℎ 

observation counting from the first and the (1 − 𝑝)-quantile is the 𝑟 − 𝑡ℎ observation counting 
from the last; (ii) If 𝑟 = 𝑛𝑝, the 𝑝-quantile is the average of the 𝑟 − 𝑡ℎ and the (𝑟 + 1) − 𝑡ℎ 
observation counting from the first, while the (1 − 𝑝)-quantile is the average of the 𝑟 − 𝑡ℎ and 
the (𝑟 + 1) − 𝑡ℎ observation counting from the last. 

 
MEASURES OF DISPERSION.  

The standard deviation is the most common "measure of dispersion". As in the mean (a)and 
(b) hold. Furthermore, it is (1) positive; (2) location invariant; (3) scale equivariant; and (4) 
reflection invariant. We formally define a measure of dispersion as a summary measure satisfying 
(a)-(b) and (1)-(4). Three methods to construct dispersion measures are given below. The first two 
use deviations 𝑑𝑖 = |𝑥𝑖 − 𝑡|, 𝑖 = 1, … ,𝑛 from a measure of central tendency 𝑡. 
 Method I For a given measure of central tendency, say 𝑠, compute 𝑠(𝑑1,𝑑2, … ,𝑑𝑛) > 0 
where 𝑠 is a measure of central tendency (which may be eventually coincide with 𝑡.) Using the 
mean and the median as the measures of central tendency involved, we get four combinations. 
When both 𝑡 and 𝑠 correspond to the mean we get MAD.  
 Method II Choose an invertible function 𝑔 from IR into IR , compute 𝑤𝑖 = 𝑔(𝑥𝑖), and its 
average 𝑤. then the resulting measure of dispersion is ℎ(𝑤), where ℎ is the inverse of 𝑔. It can be 
proved that scale invariance implies that, except for a trivial constant, the only admissible 
transformations are 𝑔(𝑧) = 𝑧𝑟 with positive 𝑟 and 𝑔(𝑧) = log𝑧. The arithmetic mean, the quadratic 
mean and the harmonic mean Correspond to 𝑟 = 1,2,−1 respectively. The geometric mean 
corresponds to the logarithmic transformation. For 𝑟 = 2 we get the standard deviation. 

Method III Linear combinations of order statistics. 
 𝑆𝑛 = ∑  𝑛

𝑖=1 𝑐𝑖𝑋(𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖  =  −𝑐𝑛+1−𝑖,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,𝑎𝑛𝑑 ∑  𝑛
𝑖=1  𝑐𝑖 = 0.1.  

Note that this measures are clearly location invariant and scale equivariant. If the measure is 
negative one needs only change the signs of the coefficients. Some examples are the range and the 
interquartile range. Note that 𝑄2 − 𝑄1 satisfies all properties, but the symmetry condition 
 
ACTIVITIES 

• Activity 1 The teacher asks each student choose a color and constructs a tally diagram. 
Change the order of the choices and check that the tally diagram does not change. For very 
young students ask them to paint a block with his favorite color. Rearrange the blocks at 
random and check that the tally diagram remains unchanged.use painting of blocks instead.  

• Activity 2 The teacher asks each student separately to complete a survey, where each 
question must be answered with the choice: 1.- disagrees 2.- not sure 3.- agrees. After that 
process the data, find frequency distributions, and construct bar charts.  

• Activity 3: (a) Given the raw data construct a 2 × 2 contingency table and the marginal 
distributions. (b) For these fixed marginal distributions make up several contingency tables 
satisfying them. (c) Make up questions that can or cannot be answered by the marginal 
distributions, but can be answered from the contingency table.  

• Activity 4: For the ordered data 1, 3, 5,7, 9, 11,13, 15,17, 19 compute the 𝑝-quantiles for 
𝑝 = 0.20,0.25,0.75, and 0.80. Verify the time reversal property.  

• Activity 5: Verify directly that 𝑄1+𝑄3
2

 and 𝑄1+2𝑄2+𝑄3
4

 are measures of central tendency.  
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• Activity 6: Show directly that the quadratic mean and the harmonic means of the absolute 
deviations are measures of dispersion. Try this with small data sets. 

• Activity 7: Verify directly that 𝑄3 − 𝑄1 and 𝑄1 + 𝑄3 − 2𝑄2 are measures of dispersion 
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